
PoReps: Proofs of Space on Useful Data

Ben Fisch

Stanford University, Protocol Labs

Abstract

A proof-of-replication (PoRep) is an interactive proof system in which a prover defends
a publicly verifiable claim that it is dedicating unique resources to storing one or more
retrievable replicas of a data file. In this sense a PoRep is both a proof of space (PoS) and
a proof of retrievability (PoR). This paper establishes a foundation for PoReps, exploring
both their capabilities and their limitations. While PoReps may unconditionally demonstrate
possession of data, they fundamentally cannot guarantee that the data is stored redundantly.
Furthermore, as PoReps are proofs of space, they must rely either on rational time/space
tradeoffs or timing bounds on the online prover’s runtime. We introduce a rational security
notion for PoReps called ε-rational replication based on the notion of an ε-Nash equilibrium,
which captures the property that a server does not gain any significant advantage by storing
its data in any other (non-redundant) format. We apply our definitions to formally analyze
two recently proposed PoRep constructions based on verifiable delay functions and depth
robust graphs. Lastly, we reflect on a notable application of PoReps—its unique suitability
as a Nakamoto consensus mechanism that replaces proof-of-work with PoReps on real data,
simultaneously incentivizing and subsidizing the cost of file storage.

1 Introduction

A proof-of-replication (PoRep) builds on the two prior concepts of proofs-of-retrievability (PoR)
[30] and proofs-of-space (PoS) [24]. In the former a prover demonstrates that it can retrieve a
file and in the latter the prover demonstrates that it is using some minimum amount of space
to store information. Most proofs of space require the prover to use this space to store junk
information that is only relevant to the PoS protocol. A PoRep, in essence, embeds a PoR
within a PoS. It enables the prover to demonstrate that it is using some minimum amount of
space while simultaneously allowing it to actually use that space to store useful information.
An additional critical property of a PoRep is that the storage costs required to succeed in the
protocol depend only on the size of the data inputs and are otherwise independent of the data
inputs. In particular, the cost to succeed in the protocol should not depend on whether or not
this data was privately preprocessed (e.g. encrypted by a client) or generated by the server itself.
As another special case, if the input to the protocol were k redundant copies of the same file
then this would cost the same as running the protocol on k distinct data files. Intuitively, this
would achieve the following property: even if a PoRep prover could pass the protocol without
storing the data redundantly (e.g. by deduplicating the k copies), there would be no advantage
to doing so. In other words, it would be rational for a PoRep prover in this scenario to honestly
store k copies of the data.

1



Consider as a thought exercise a simple composition of a PoR protocol and PoS protocol
that would not succeed in achieving these goals. This simple protocol requires the prover to
use a total of 2N space. The prover uses half of this space to produce a PoS (i.e. it runs a
standard PoS protocol that requires it to fill this space with random data) and it uses the other
half to actually store some useful data file of size N and produce PoRs of the file. This satisfies
both a PoR and a PoS with only 2N storage and therefore shows both that the prover is using
some minimum Ω(N) amount of storage and is able to retrieve the data of interest. However,
it fails the “independent cost” criterion. Namely, it is more expensive for the prover to run
this protocol on useful data (requiring 2N space to store both the useful data and the random
data) than to just store the useless random data required for the PoS and provide a PoR for
this random data (requiring only N space). Moreover, consider if the prover were asked to store
k redundant copies of the same file D and use this protocol to prove that it (a) is using at least
kN space to store these copies and (b) is able to retrieve D. Following the protocol honestly
requires 2kN space: kN space to store the k copies of D and kN space to store the random
data required for the PoS. Unfortunately, the most rational strategy would be to store only the
random data and a single copy of D as this uses only (k+ 1)N space and still allows the prover
to successfully pass the protocol.

While standard PoRs can provide proofs of data duplication in a private-verifier1 setting
where the client preprocesses its own data before sending it to the server, their security relies on
a non-colluding client to privately preprocess the data. One advantage of PoReps over standard
PoRs for proofs of data duplication is that multiple clients could contribute data to a single
database and would not need to trust any single client to preprocess the data. PoReps could
also be used to provide proofs of storage for publicly available data. For example, a consensus
server in a massively distributed and open state-replication system such as Bitcoin could provide
a PoRep that it is storing a complete history of the state-machine transcript (i.e. in blockchain
systems like Bitcoin this is referred to as a “full node” storing the “chain”). Unlike PoRs,
PoReps could be used to provide this proof without requiring all the verifiers to send the server
their own preprocessed copy of the public transcript (incurring impractical communication).

PoReps provide a publicly verifiable proof of data duplication, secure against adversaries who
will not deviate from an ε-rational honest strategy. The notion of an ε-equilibrium is used in
game theory as a generalization of a Nash equilibrium where players gain at most an ε advantage
from deviating. This solution concept is appropriate for a malicious-but-lazy adversary, or in
conjunction with the status-quo-bias assumption: you are on the couch and the TV remote is
across the room, so you continue to watch the same channel. This may seem like a strangely
weak security property to achieve in a cryptographic protocol. For a very simple reason it is
actually the best possible security that PoReps can achieve, at least in the standard2 model of
computation for cryptographic analysis. In short, any prover storing k independent replicas of
the file could intentionally correlate these replicas in a way that it can still efficiently retrieve
each in its original format. For example, it could encrypt them and store the key.

However, the primary use case of PoReps is probably not a proof of storage system that
weakly discourages de-duplication. The properties achieved by PoReps make it uniquely suited

1Verification of PoRs can also be outsourced. Proofs of retrievability where a client can outsource the work
of verifying proofs were previously referred to as publicly verifiable PoRs or “public PoRs”, however the label
outsourceable appropriately distinguishes their security property from the public verifiability of PoReps and proofs
of space.

2This does not preclude secure hardware solutions or proofs based on network timing.

2



for a Nakamoto consensus mechanism (also known as blockchain consensus) that use PoReps
as a useful proof of space in place of Bitcoin’s proof-of-work to achieve sybil-resistance. Briefly,
Nakamoto consensus mechanisms and its variants are a special type of state-machine replication
process managed by an unpermissioned, asynchronous, and distributed network of consensus
participants, with the additional feature that the state-machine itself encodes fungible tokens of
value. In particular, a defining characteristic of these consensus mechanisms is their ability to
mint new tokens in the state machine in order to reward and incentivize consensus participants
(termed miners), taking for granted that these tokens represent real-world assets.

Blockchain systems based on proof-of-space have been proposed [19,42] and are in active de-
velopment, pursuing goals including energy efficiency and more egalitarian distribution.3 PoReps
target a different advantage entirely: they simultaneously incentivize useful peer-to-peer data
storage. This is the basis of Filecoin [1]. The miners that manage the system’s distributed
state-machine are required to produce PoReps in order to append transactions, or equivalently,
be elected as temporary consensus leaders, and are rewarded with freshly minted coins in return.
Accepting the hypothesis that the miners will be incentivized by these rewards alone to produce
PoReps, just as Bitcoin miners produce wasteful proofs-of-work, the rewards–in effect–subsidize
the auxiliary useful work accomplished by the PoRep: file storage.

The utility of ε-rational replication in this context is immediately transparent. It character-
izes the ε cost required to nudge a data replication strategy from a weak equilibrium strategy
into a strong one. In other words, it represents the cost that clients must pay (in a stylized
model that ignores other market variables) to convince miners to encode their real data inside
PoReps rather than “useless” generated data, and therefore the degree to which a system such
as Filecoin subsidizes storage costs. PoReps thus sit at an exciting crossroads of economics and
cryptography:

PoReps epitomize a cryptographic mechanism that is concerned not solely with the
actions and capabilities of an adversary, nor penalties levied for misbehavior, but
rather its broader effect on behaviors in an economy.

1.1 Related work

Proofs of storage Cryptographic proofs of storage have been proposed in a variety of flavors
throughout the literature. Broadly speaking, proofs of storage are interactive protocols between
a server (prover) and client (verifier) with different goals relating to statements about the server’s
storage. Proofs-of-retrievability (PoR) [30] demonstrate that the prover can retrieve some spec-
ified data known to the verifier. A public-key PoR is outsourceable, meaning that the client can
provide a public authentication tag that any verifier can use to verify the server’s proofs. Unless
the data itself is incompressible, a PoR does not necessarily prove anything to the verifier about
how much space the prover is using in order to retrieve the file. In particular, in the public-key
setting the third party verifier does not know whether the client is colluding with the server or
not, and therefore a PoR is not a truly publicly verifiable claim of storage. In proofs-of-space
(PoS) [24] a time-constrained prover demonstrates that it is storing some incompressible string
of Ω(N) bits, and therefore using at least Ω(N) bits of space. This formulation of PoS is some-
times referred to as a proof of persistent space as opposed to a proof of transient space [46].
Timing assumptions are inherently required in proofs of persistent space due to the efficiency

3The Chia Network is a blockchain system based on PoS, https://chia.net/.

3

https://chia.net/


requirement that the communication between the prover and verifier is required to be compact,
as otherwise the prover can store only the communication transcript and recompute the advice.
Proofs-of-secure-erasure (PoSE) [44] are protocols similar to a PoS intended to demonstrate that
a storage-bound prover has erased all of its storage. An important difference between PoSE and
the standard PoS notion is that they involve a private-key verifier who preprocesses data, similar
to a PoR proof. They were suggested as a protocol for a memory-bound embedded device to
prove to a server that it has erased private data or all prior code before an update, e.g. to ensure
that any malware has been erased.

Rationally secure storage protocols All of the above proof of storage protocols are uncon-
ditionally secure, or at least characterize security in terms of strong time-space lower bounds.
However, there are additionally a class of proof of storage protocols that are secure in a weaker
rational adversary model. The model considered in all of these works is an adversary that acts
to minimize its storage costs. Storage enforcing commitments [28] were a precursor to PoR
that require the prover to dedicate a minimum amount of storage in order to pass the protocol
for a committed file F (preprocessed by a client with a secret key). Their constructions did
not guarantee unconditionally that the prover was actually storing F , and were therefore only
secure in an epsilon-rational sense. Hourglass schemes [51] were proposed as a generic method
to prove that a server is storing data encoded in a specified format, in particular for the use
cases of encryption-at-rest and file watermarking. Similarly, they leave open the possibility that
the server is also storing a plaintext or non-watermarked version of the file. It only guarantees
that such a server must use twice the storage resources to act maliciously.

Proof of data replication vs PoReps A proof of data replication/duplication, specifically
in the sense of proving that data is stored in a redundant format, is a special case of hourglass
schemes. Proofs of data replication/duplication have been explored primarily in the private-
client setting similar to proofs of retrievability [7,47]. In this setting a client is somehow involved
in preprocessing the data and either the client is the verifier or the client outsources its own
verification work. The system Mirror [7] is one such example, which proposed a way for the
server to replicate the client’s initially preprocessed file without requiring further communication
from the client. The main technique in Mirror is a variant on RSA time-lock puzzles, and the
security relies on timing assumptions similar to PoS. Several days ago another paper exploring
this line of work was posted, which proposed a construction of proof of data replication in the
private-client setting without timing assumptions [21].

The term proof-of-replication (PoRep), which is the focus of our work, was proposed by the
Filecoin project [2] in reference to a hybrid of a PoR and PoS that demonstrates in a publicly
verifiable way that the prover is using space to store a unique replica of a file, or even several
unique replicas of the same file. The main intent of this proposed primitive was to resist the
so called “generation attack”, i.e. it should be a publicly verifiable proof of space even when
the server may collude with a client. A nearly equivalent concept to proof-of-replication was
proposed earlier by Sergio Demian Lerner in 2014 under the name proof of unique blockchain
storage [33]. It focussed on the special case where all provers/verifiers in the system know at least
one copy of the replicated file. For instance, it was proposed as a mechanism for demonstrating
publicly that the Bitcoin blockchain is highly replicated. Lerner proposed using time-asymmetric
encodings to apply a slow transformation to a file using a unique identifier as a key. Boneh et. al.
generalized this construction using a new primitive called a decodable verifiable delay function

4



(VDF) [14]. New constructions of PoReps using more traditional tools from proofs of space (i.e.
hard-to-pebble graphs) were concurrently proposed in [26,45].

Tight proofs of space As we develop in this work, there is a strong connection between
tight proofs of space and PoReps. A tight proof of space is one where any adversarial prover
implementing an attack uses only an ε fraction less space than the honest prover where ε can
be made arbitrarily small. Intuitively, if a PoRep is not a tight proof of space (e.g. ε =
1/2) then there may be some adversary that would be rationally incentivized to deviate from
honest behavior and therefore likely destroy the replication format. Pietrzak [45] constructed
the first tight PoS, although the proof size is O(1/ε2) and depended on depth robust graphs with
rather special properties [6]. Concretely, according to the analysis it requires graphs of degree
2, 760 logN just to achieve 1/2 space gap. The PoRep based on verifiable delay encodings as
a moderately hard function [14] is in fact an arbitrarily tight PoS, however it is exceedingly
inefficient to generate on large data (scaling quadratically in the data size).

1.2 Contributions and Organization

This work is a foundational study of PoReps. Primarily, we motivate the goals of PoReps
and explore what they are in contrast to other cryptographic primitives. Although many of
the related primitives including proofs of retrievability, proofs of space, and proofs of data
replication (private-client setting) were formally defined and studied in prior works, this is
the first comprehensive formal study of PoReps. While a presentation at BPASE 2018 [26]
provided the first basic definitions for PoReps and intuition about both the impossibility of
ideal security and how to define ε-rational replication, we build upon this further and provide
a comprehensive model and definitions. In particular, our framework also addresses issues of
composable security noted in a recent paper by Fisch and Silas [27]—namely the issue that the
prover may be incentivized to deviate from a rational replication strategy if deviating somehow
benefits another simultaneous storage mechanism (e.g., perhaps it could use the PoRep data to
compress auxiliary data that it is storing).

Relevant background information and preliminary tools are discussed in Section 2. While
for the most part this is a review, we also present a new formulation of a primitive we call
proof of retrievable commitment (PoRC) and a simple generic construction based on vector
commitments. This generalizes the simple public proof of retrievability on Merkle commitments
that is used ubiquitously, particularly as a subprotocol in proofs of space. Section 3 defines
PoReps abstractly and presents our security model for ε-rational replication (Definition 23).
We show that this definition implies that the PoRep is a PoS, although it does not demand
it explicitly. Proving that a PoRep construction satisfies the definition also likely requires
“knowledge of compression assumptions” [27]. We formulate one such assumption along with a
key lemma (Lemma 4) that establishes sufficient criteria for ε-rational replication, showing that if
a PoRep construction satisfies PoRC and PoS in a certain sense then it will also satisfy ε-rational
replication. This greatly simplifies the analysis of candidate PoRep constructions. Section 4
presents in detail the two constructions Basic-VDE-PoRep from VDFs [14] and DRG-PoRep [26]
that fuses more traditional techniques in PoS (hard-to-pebble DAGs) with VDFs. In Section 5
we discuss practical instantiations of DRGs and some new experimental measurements regarding
their security. Finally, Section 6 applies the model, definitions, and Lemma 4 of Section 3 to
formally analyze and prove secure both constructions DRG-PoRep and Basic-VDE-PoRep.

5



Contents

1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries and Background 6
2.1 Compression and Erasure Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Proofs of Retrievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Proof of Retrievable Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 PoRC Syntax and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 PoRC from Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Verifiable Delay Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 VDE security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Depth Robust Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Proofs of Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Graph pebbling games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Proof-of-Replication 26
3.1 Replication Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Impossibility of ideal replication security . . . . . . . . . . . . . . . . . . . 33
3.1.2 Rational adversary model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Security for decentralized storage networks . . . . . . . . . . . . . . . . . 40

4 Constructions 41
4.1 Basic PoRep from Verifiable Delay Encodings . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Basic-VDE-PoRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Block Chaining Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 DRG PoRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 DRG-PoRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Instantiating Depth Robust Graphs 51
5.1 Bucket Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Formal security analysis 54
6.1 Labeling games with VDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Security claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2 Preliminaries and Background

2.1 Compression and Erasure Codes

A source S over {0, 1}n is a distribution over strings in {0, 1}n. Encoding schemes consist of a
pair of algorithms (enc, dec) such that enc maps strings from the support Sup(S) of a source S
to a code space Σm over an alphabet Σ, and dec recovers inputs in Sup(S) from codes in Σm. If
Sup(S) = {0, 1}n and the distribution S is not relevant to the properties of (enc, dec) then we

6



may just call it an encoding scheme on {0, 1}n. The two types of encoding schemes of interest
here are compression and erasure codes, which have opposite goals.

Erasure codes Erasure codes, as the name suggests, can tolerate deletion of a constant frac-
tion of symbols in a code and still recover the encoded data. They are an extreme form of
redundant storage.

Definition 1. An (r, δ) erasure code is an encoding scheme (enc, dec) on {0, 1}n to Σn where
n/m = r (called the rate) and for all x ∈ {0, 1}n such that enc(x) = (w1, ..., wm) the decoding
algorithm dec can recover x from any (1 − δ)m symbols in w, i.e. if E ⊂ [m] is any εm size
subset and ŵ = (ŵ1, ..., ŵm) where ŵi = ⊥ for i ∈ E and ŵi = wi for all i 6∈ E then dec(ŵ) = x.
A (1− δ, δ) erasure code is called an optimal rate 1− δ erasure code.

Compression schemes The goal of compression, in contrast, is to encode the original data
source with the smallest possible number of symbols such that the data can still be decoded
efficiently (at least with high probability). Often a compression scheme will output codes of
variable length depending on the input, however for simplicity the following definitions and
facts focus on the special case that all outputs are padded to the same length. Unlike erasure
codes, compression schemes are not concerned with structural properties of the code other than
its overall length, hence without loss of generality the alphabet is Σ = {0, 1}.

Definition 2 (Compression scheme). An (S, k)-compression scheme for a source S over {0, 1}n
is an encoding scheme (enc, dec) such that enc : {0, 1}n → {0, 1}k and dec(enc(s)) = s for all
s ∈ Sup(S).

Definition 3 (k-Compressible). A source S is said to be k-compressible (or compressible to k
bits) if there exists a (S, k)-compression and incompressible to k bits otherwise.

By this definition of an (S, k)-compression scheme it is necessary that k is at least the
max entropy of S, i.e. k ≥ log2 |Sup(S)|, because it must uniquely encode every string in the
support. A lossy compression scheme compromises on the probability of recovery, but may be
able to compress to fewer bits than the max entropy.

Definition 4. A δ-lossy (S, k)-compression scheme is an encoding scheme (enc, dec) where
enc : {0, 1}n → {0, 1}k and Prs←R S [dec(enc(s)) = s] = 1− δ. S is said to be δ-lossy compressible
to k bits if and only if such an encoding scheme exists and δ-lossy incompressible otherwise.

Randomized compression In randomized compression schemes, enc and dec use an addi-
tional entropy source to aid in compression. In the most general case enc and dec may simply run
independent randomized algorithms. More typically, they will share information about a seed,
either communicated through the encoding output itself or pre-shared, which we may assume is
a uniformly random string ρ ←R Ur (Ur denotes the uniform distribution over {0, 1}r). Follow-
ing the terminology of [27] we distinguish weak and strong randomized compression (similar to
weak vs strong randomness extractors). Strong compression stores the seed separately from the
compressed data, and is equivalent to compression with shared randomness. Weak compression
may entangle the seed and the data in the code in such a way that the decoder can still recover
both the data and the seed.

7



Definition 5 (Weak compression). A δ-lossy (S, r, k)-weak compression for a source S over
{0, 1}n is an encoding scheme (enc, dec) such that enc : {0, 1}r × {0, 1}n → {0, 1}r+k and
Prρ←R Ur,s←R S [dec(enc(r, s)) = (r, s)] = 1− δ.

Definition 6 (Strong compression). A δ-lossy (S, r, k)-strong compression for a source S over
{0, 1}n is an encoding scheme (enc, dec) where enc : {0, 1}r × {0, 1}n → {0, 1}k and dec :
{0, 1}r × {0, 1}k → {0, 1}n such that Prρ←R Ur,s←R S [dec(ρ, enc(ρ, s)) = s] = 1− δ.

A lossy strong compression scheme can be made lossless for a small decrease in compression
[49]. Even strong compression schemes cannot compress a uniformly random data source [22].

Fact 1. If there exists a δ-lossy (S, r, k)-strong compression for a source S then there exists an
(S, r, k + δ(n− k) + 1)-strong compression of S with no loss.

Fact 2. The uniform distribution Un over {0, 1}n is incompressible to n − 1 bits and δ-lossy
incompressible to n−log(1/δ)−1. Likewise, there does not exist a δ-lossy (Un, r, n−log(1/δ)−1)-
strong compression scheme.

2.2 Proofs of Retrievability

A proof-of-retrievability (PoR) is an interactive proof system in which a verifier sends a file F
to a prover, retains a compact verification key, and later obtains a compact proof that prover
can retrieve F intact. The compactness requirement excludes trivial solutions, such as sending
the full file F back to the verifier or requiring the verifier to retain F . They were introduced
in [30] and further developed in [15, 23, 48]. The related (weaker) concept of provable-data-
possession (PDP) was independently introduced in [8]. Abstractly, these constructions involve
two layers of encodings. First an erasure code is applied to the file F to generate F̃ , which
guarantees that F can be decoded from adversarial deletion of an ε fraction of F̃ . Next, the
file F̃ is transformed using a secret-key encoding (essentially a type of authentication code),
and the verifier retains the key. The second encoding can be checked through a constant size
challenge-response protocol, which the prover will fail if it cannot recover at least a 1−ε fraction
of F̃ . An important security property of PoR is that the verifier can extract and recover the file
F through sufficiently many successful challenge-response queries to the prover.

While a standard PoR requires a secret key to verify, there are also constructions that allow
for outsourced verification where anyone can verify without knowledge of the secret [30,48]. We
refer to this as a public-key PoR to distinguish it from a private-key PoR that requires a private
key for verification. Shacham and Waters [48] construct an efficient public-key PoR (from CDH
in bilinear groups) using the homomorphic properties of BLS signatures. Their construction was
generalized to rely on a broader class of homomorphic linear authenticators [9]. This property
has been described as “public verifiability”, however these proofs still rely on a private-key
client to privately preprocess the file. If the prover and client collude then the proof does not
demonstrate anything meaningful to a third party observer.

A Merkle commitment (i.e. a Merkle tree over the blocks of the file) can be be used to
construct a simple, albeit less efficent, publicly verifiable PoR [30]. The verifier need only retain
the Merkle commitment root. To verify that the prover is still storing a (1 − ε) fraction of the
committed file blocks it queries for a randomly selected constant number of blocks. The prover
then responds with the blocks and Merkle inclusion proofs for each. This public PoR is keyless,
which is an important difference from the public PoR of Shacham and Waters. For example,

8



it can be used to give a publicly verifiable proof-of-retrievability of a committed file, where the
even the prover itself sets up the commitment. We present this as a standalone primitive and
describe a generalized construction using vector commitments.

2.3 Vector Commitments

A vector commitment (VC) [17,35] is a cryptographic commitment to an ordered sequence of m
values (x1, ..., xm) that admits succinct openings at specific positions (e.g., prove that xi is the
i-th committed message). For security, VCs are required to satisfy position binding, which states
that an adversary should not be able to open a commitment to two different values at the same
position. Moreover, VCs are required to be concise, i.e. the size of the commitment string and
of its openings is independent of the vector length. Usually VCs are also required to be hiding,
meaning that opening at several positions does not leak any information about the committed
values at other positions. A Merkle tree is an example of a simple vector commitment that is
binding and concise but not hiding. The main drawback of Merkle commitments are that proofs
are of size λ log2m bits where m is the length of the vector and λ is the length of the hash
output (e.g. λ = 256 for collision resistance).

Catalano and Fiore [17] gave several constructions of vector commitments achieving both
hiding and constant size openings, one from RSA and the other from CDH over bilinear groups.
These were further improved upon in [34]. The main drawback of these constructions are the
size of the public parameters, which are linear in the length of the vectors. As noted in [17], the
RSA-based vector commitment can be modified to reduce the size of the public parameters, but
at the expense of a significant increase in verification work. In Section ?? we point out a very
useful batching property of the RSA-vector commitment from [17], namely that the simultaneous
opening of several indices can be batched into a single constant size proof.

Cryptographic accumulators [10, 13] give constant size commitments to a set of elements
with constant size inclusion proofs of a single element, however they do not yield a vector
commitment (i.e. commitment to an ordered set) with efficient inclusion proof at a specified
index. This is due the fact that they are not naturally binding to an element at a particular
index—the natural idea of prepending an index to each element inserted does not preclude
inserting more than one element with the same prepended index. In Section ?? we describe a
new vector commitment construction based on RSA accumulators [16] that has constant size
public parameters and O(λ logm) size openings (λ ≈ 1024 − 2048 based on current beliefs for
strong RSA security). The opening of a single vector component is no more compact that a
Merkle commitment opening, however the openings of several n-bit vector components can be
batched in a way that achieves an amortized O(min(n, λ) · logm) bits per message, which is
concretely smaller than a Merkle opening when n << 256.

Vector commitment syntax We provide a redacted syntax for vector commitments (omit-
ting functionality for updating commitments) and allowing for batched openings.

1. VC.Setup(1λ, n,M)→ pp Given security parameter λ, length n of the vector, and message
space of vector componentsM, output public parameters pp, which are implicit inputs to
all the following algorithms.

2. VC.Com(~m) → τ, c Given an input ~m = (m1, ...,mn) output a commitment c and advice
τ .

9



3. VC.Open(~m, c, S, τ) → ΛS On input ~m, a vector of indices S, the commitment c, and
advice τ output an opening ΛS that proves mi is the ith committed element of c for all
S[i] (where S[i] denotes the ith element of S).

4. VC.Verify(c,m′1, ...,m
′
q, S,ΛS)→ 0/1 On input commitment c, a vector S of indices in [n],

and an opening proof ΛS output 1 (accept) if and only if ΛS is a valid proof that c is a
commitment to a vector ~m such that mS[j] = m′j for j ∈ [q]. If S = ∅ then Λ should be a
normal opening, i.e. proof that c is a commitment to m s.t. mi = m′i for all i (and q = n).

Binding commitments The main security property of vector commitments (of interest in
the present work) is position binding. The security game augments the standard binding com-
mitment game

Definition 7. A vector commitment scheme VC is position binding if for all O(poly(λ, n)-time
adversaries A and for all S′, S ⊆ [n] with |S| = q and |S′| = q′ and i ∈ [q], j ∈ [q′] the following
probability is at most negligible in λ:

Pr

[
VC.Verify(c, ~m, S,Λ) = 1 ∧ VC.Verify(c, ~m′, S′,Λ′) = 1

∧ S[i] = S′[j] ∧ mi 6= m′j

∣∣∣∣∣pp← VC.Setup(1λ, n,M)

(c, ~m, ~m′,Λ,Λ′)← A(pp)

]

2.4 Proof of Retrievable Commitment

We describe here a primitive that we call a proof of retrievable commitment (PoRC), or al-
ternatively a keyless PoR, which allows a prover to give a compact proof of retrievability for
a committed value. Similar to a public PoR, the proof verification algorithm does not take a
private key. However, it additionally does not involve any private-key preprocessing of the file.
Therefore, unlike public-key PoRs where the verification may only be outsourceable, PoRs are
truly publicly verifiable: a PoRC is a standard PoR to any verifier that is first given the open-
ing of the commitment (to a particular file) and retains the commitment as a tag. Indeed the
concepts of a PoRC and keyless PoR are roughly equivalent, as any keyless PoR must involve
a keyless data extractor, implying that it can be used as a binding commitment scheme (where
opening is through extraction).4 A PoRC is also similar to a succinct proof of knowledge (PoK),
or SNARK [11], of a committed value. The difference lies still in the type of extraction, which
unlike knowledge extraction does not require reading the prover’s internal state.

The notion of a PoRC was already implicit in the literature on proofs of retrievability, a
simple example being the PoR from Merkle commitments suggested by [30], although a formal
presentation and proof of security was not given therein. We present a more general construction
of PoRC from any vector commitment scheme and provide a formal proof of security.5

4This has also been referred to as a PoR with public extraction in [48].
5Our proof is a straightforward coupon collector’s argument, following the same proof technique from [48]

and [23]. The reason the proof is non-trivial to begin with arises from the fact that all challenges are given to
the prover in parallel (rather than sequentially) to amplify soundness. This is more broadly connected to direct
product theorems in hardness amplification. In fact, Lemma 1 follows from a more general and previously known
result (Lemma 7 of [23]), however we still include our own analysis in the special setting of PoRC from vector
commitments, both for completeness of presentation and the benefit of the reader.

10



2.4.1 PoRC Syntax and Definitions

Our syntax for a PoRC with a message space M⊆ {0, 1}n is as follows.

1. PoRC.Setup(1λ,M)→ pp,M on input security parameter λ and message spaceM output
public parameters pp.

2. PoRC.Commit(pp,m) → com,Λ, α on input pp and a message m ∈ M outputs a binding
commitment com to the message m along with an opening hint Λ and additional advice
α for the prover.

3. PoRC.Open(pp, com,Λ)→ m opens the commitment com to a message m ∈ M∪⊥ given
the opening hint Λ. The output is ⊥ if and only if Λ is an invalid opening.

4. PoRC.Prove(pp, α, com, c) → π is a proof generation algorithm that takes pp, the storage
advice α, the commitment com, a challenge c (from either the verifier or possibly a public
source) and outputs a proof π.

5. PoRC.Verify(pp, com, c, π)→ 0/1 receives pp, the commitment com, challenge c, and proof
π and outputs either 1 (accept) or 0 (reject).

PoRC protocol We define the PoRC interactive protocol between a prover P and verifier V.
The PoRC interactive protocol as we define it here is public coin, but could be expanded to
allow for private coin protocols as well. First P runs PoRC.Commit(pp,m), sends the output
com to the verifier, and stores both the opening hint Λ and additional advice α. Next V samples
a random challenge c and sends this to P. Finally, P runs PoRC.Prove(pp, α, com, c) and sends
the output π to V, who runs PoRC.Verify(pp, com, c, π) and outputs its decision 0/1. Note that
PoRC.Open is not used in the protocol, but its existence (satisfying a message binding property)
is necessary for security. Furthermore, a verifier may use PoRC.Open to obtain an opening of
the commitment at any point, or alternatively its description (e.g. in order to verify a zero-
knowledge proof of some property of the message).

Correctness For a PoRC to be correct we require the commitment com to be compact, i.e.
logarithmic in the length of m. Furthermore, in the PoRC interactive protocol with an honest
prover and verifier (for any m ∈ M) should output 1 (accept) with probability 1. (We omit
further formalism as this is standard).

Soundness The PoRC soundness property is more subtle and has two components: commit-
ment binding and retrievability. These properties are intertwined as together they say that
for any admissible prover (loosely one that is sufficiently successful) there exists an extraction
process that extracts a message m unique to the commitment com.

The first requirement is that PoRC.Commit/PoRC.Open is a binding commitment scheme in
the standard sense:

Definition 8. A PoRC scheme is binding if for all O(poly(λ)) adversaries A the probability
over pp ← PoRC.Setup(λ,M) and (Λ,Λ′, c∗) ← A(pp) and m ← PoRC.Open(pp, c∗,Λ) and
m′ ← PoRC.Open(pp, c∗,Λ′) that m′ 6= m 6= ⊥ is negligible in λ.

11



Next we define retrievability. Intuitively, the desired property is that any adversary who is a
able to produce a commitment com, open this commitment to a value m (e.g. for a client), and
then succeed with non-negligible probability in the PoRC protocol with a public verifier must
still be able to retrieve the value m, i.e. there is an extractor that can run the prover on public
verifier challenges in order to uniquely extract the same value m. We define a game played
between an adversary A = (A1, A2) and a challenger which essentially just runs the public-coin
PoRC protocol. The game is simpler than the PoR games in [23, 48] because of our restriction
to a public coin verifier. The game is parametrized by input m ∈ M and public parameters pp
and runs as follows:

1. A1 on input pp and m outputs a message com∗ (adversarial commitment) along with
α∗,Λ∗. It passes α∗ to A2 and sends com∗,Λ∗ to the challenger. The challenger runs
m∗ ← PoRC.Open(pp, com∗,Λ). If m∗ 6= m then the challenger outputs 0 and terminates
the game.

2. The challenger samples a challenge c uniformly at random from the domain of challenges
and sends this to A2.

3. A2 (running on c, α∗, and com∗) outputs an adversarial proof π∗.

4. The challenger computes b← PoRC.Verify(pp, com∗, c, π∗) and outputs b.

For any m ∈ M we denote the challenger’s output in the game as a probability dis-
tribution PoRC-Exp(A,m, pp) over the randomness of A, the challenger’s queries, and pp ←
PoRC.Setup(λ,M).6

Definition 9. A PoRC adversary A is ε-admissible on input m if and only if A1 outputs com∗

such that PoRC.Open(pp, com∗,Λ) 6= ⊥ with probability 1− negl(λ) and PoRC-Exp(A,m, pp) = 1
with probability at least ε.

We define a PoRC extractor E (akin to the extractor in a proof of knowledge) as an oracle
algorithm that is given the output com∗ of the PoRC adversary A and simulate the interaction
between the challenger and A2. An important modification is that the extractor can rewind
A2 and reissue fresh challenges (for further formalism on extractor machines that can rewind
adversaries see [25, 37]). The key difference between our extractor and a standard knowledge
extractor is that it cannot read the internal state or inputs of the adversary in the game, only
the power to rewind its randomness. More specifically, in each run of the extractor playing the
game PoRC-Exp(A,m, pp) with A, it first obtains a commitment c∗ and then repeatedly queries
A2 (possibly rewinding A2 at some points), until it finally outputs either a message m∗ ∈M or
⊥ (indicating failure). Let m∗ ← EA(m)(pp) denote the output distribution of this experiment.

Definition 10. A PoRC is ε-sound if it is binding and additionally for every λ there exists a
PoRC extractor E that runs in time poly(λ, n, 1/ε) such that for any m ∈M and any adversary
A that is ε-admissible on m the probability over pp← PoRC.Setup(λ,M) and m∗ ← EA(m)(pp)
that m∗ 6= m is at most negl(λ).

6The adversary in the game is non-adaptive, which at first glance may appear to weaken the adversary. Note
that the challenger in the game is entirely public-coin. The adversary can simulate any polynomial number of
adaptive rounds of the game in his head before engaging in a final real round with the challenger.

12



Definition 10 captures that any adversary who passes the PoRC protocol with non-negligible
probability at least ε must be able to retrieve the underlying data by running the extractor in
time O(1/poly(ε)) with its own code.7 If on the other hand the adversary does not pass the
PoRC with probability at least ε then the soundness error of the protocol with this adversary is
ε in the standard sense (i.e. it is caught with probability at least 1− ε).

Extractor runtime Extractors always have a larger runtime complexity than the original
adversary A. Extractors are considered stronger the smaller this overhead. In our case A1

first generates a commitment that is then given to A1 (we do not count the runtime of A1 on
pp as part of the extractor’s runtime). We say that the extractor has constant blowup if the
runtime is only a constant factor larger than A2. It turns out that the parallel runtime of the
PoRC extractor will be highly relevant to the security analysis of PoRep schemes. We say the
extractor has constant PRAM blowup if the parallel runtime is only a constant factor larger than
the parallel runtime of A2.

Definition 11. A PoRC is PRAM strongly ε-sound if it is ε-sound and additionally the extractor
has constant PRAM blowup.

Partial retrievability Sometimes proofs of retrievability can be useful even if they only prove
partial recovery, e.g. that a constant fraction of the bits of the message can be retrieved. In
fact, all known constructions of PoR effectively first prove partial recovery, which is amplified
to a proof of full recovery through erasure coding. The proof of partial recovery itself is more
efficient because it does not require blowing up the size of the message. Even if partial recovery
is not the end goal it is useful to abstract this as a standalone primitive that can be used as a
subcomponent of cryptographic protocol (in our case PoReps).

We define a δ-PoRC as a proof that a δ fraction of a committed message can be retrieved.
We generalize this even further to a (δ, C)-PoRC where C is any set cover of the committed
message m, each set consisting of bit indices of m (assume w.l.o.g. that m is represented as
a bit vector). This is useful when it is important to ensure that the missing fraction of bits
isn’t completely arbitrary, for example that at least a δ fraction of complete message blocks are
retrievable. A δ-PoRC is equivalent to the special case where the set cover consists of disjoint
singleton sets, each containing a single bit of the message.

The security game and extractor for a (δ, C)-PoRC is unchanged from the definition of PoRC
and only the definition of ε-soundness needs to be modified. For any pair of equal length messages
|m| = |m′| = n and index subset S ⊆ [n] let m ≡S m′ denote that mi = m′i for all i ∈ S.

Definition 12. A (δ, C) PoRC is ε-sound if it is binding and additionally for some8 λε,δ ∈
O(log ε/ log δ) and every λ > λε,δ there exists an extractor E that runs in time poly(λ, n, 1/ε)
such that for any m ∈ M and any adversary A that is ε-admissible on m the probability over
pp← PoRC.Setup(λ,M) and m∗ ← EA(m)(pp) that m ≡S m∗ for at least a δ fraction of the sets
S ∈ C is greater than 1−negl(λ). It is PRAM strongly ε-sound if E has constant PRAM blowup.

7Due to the fact that the extraction algorithm is public, this is stronger than standard knowledge extraction,
where only the adversary who generated the adversarial code in the first place necessarily can extract the witness.
For instance, the interactive adversary in the protocol may have been given obfuscated code that hides the witness.

8The definition would still be technically equivalent in an asymptotic sense if it read “for every λ” without
further requirement, however the rewording helps to clarify that in general we cannot hope the extractor will
succeed for ε ≤ δλ.

13



2.4.2 PoRC from Vector Commitments

We describe a construction of a (δ, C)-PoRC for blocked messages of a fixed length consisting of
n blocks from a message space M, and any set cover C consisting of unions of at most O(log n)
blocks. For applications with variable length commitments we can run the setup for each n = 2k

up to a maximum size. The construction also easily generalizes to set covers consisting of sets
that are unions of at most O(polylog(n)) bit indices, regardless of the block size. We use a
vector commitment scheme VC = (VC.Setup,VC.Com,VC.Open,VC.Verify) as a black box.

Construction VC-PoRC

1. PoRC.Setup(1λ): Run VC.Setup(1λ, n,M)→ ppvc. Output pp.

2. PoRC.Commit(pp,m): Parse m as a vector ~m = (m1, ...,mn) where mi ∈ M. Run
VC.Com(~m)→ τ, com, and output τ, com.

3. PoRC.Prove(pp, τ, com, c): Let C = {S1, ..., Sk} where each Si ⊂ [n]. Parse c as integers
c1, ..., cλ ∈ [k]. Let S =

⋃λ
i=1 Sci . Run VC.Open(~m, c, S, τ) → Λ. Output the proof π

consisting of all {mj} for j ∈ S and Λ.

4. PoRC.Verify(pp, com, c, π): On c = c1, ..., cλ ∈ [k] define S =
⋃λ
i=1 Sci . Parse π =

(m′1, ...,m
′
`,Λ) and output 0 (reject) if |S| 6= `. Run VC.Verify(com,m′1, ...,m

′
`, S,Λ) (given

input S as a sorted ordered list) and output the result.

Proof size Let s(n, k) denote an upper bound on the size of proofs output by VC.Open for
vectors of length n over the message space M and index subset of size k. Let kmax denote
the largest set in C. The total proof size output by PoRC.Prove is at most s(n, λkmax) +
λkmaxlog(|M|), which by definition of VC is asymptotically O(λ log2 n). For instantiations of
VC with constant size openings, i.e. s(n, k) ∈ O(λk), the proof size is O(λ2 log n). If VC supports
batching the size is brought down to O(λ log n), which is the size of the λ sampled sets (i.e. the
vector commitment opening proof is no longer the bottleneck).

Correctness As explained above, the proof size is compact, i.e. at most O(λ log2 n). An
honest prover who stores the input message m is able to pass verification by correctness of the
vector commitment scheme VC.

Soundness We show that there is an extractor E such that EA(m)(pp) outputs the file m
with overwhelming probability for any adversary A that is ε-admissible on m, where ε > δλ is
non-negligible.

Theorem 1. VC-PoRC with security parameter λ is an ε-sound (δ, C)-PoRC for any ε > 0 such
that ε− δλ > negl(λ).

Proof. We define EA with A = (A1, A2) is given pp from PoRC.Setup(1λ) (sampled in the game
PoRC-Exp(A, λ)), and the index set cover C = {S1, ..., Sk} and runs as follows.

1. Query A1 to get com∗. Initialize a round counter r = 0. Initialize a set D = ∅ and initialize
a length n vector ~v = (0, ...., 0) of 0s.

14



2. Increment the counter r := r+ 1. Sample a random challenge vector c = (c1, ..., cλ) ∈ [k]λ

and query A2 on c and record the response πc.

3. Run b ← PoRC.Verify(pp, com∗, c, πc). If b = 0 do nothing. If b = 1, let S =
⋃λ
i=1 Sci and

parse πc = (m′1, ...,m
′
`,Λ) where ` = |S| (if πc could not be parsed this way it would have

been rejected). Write S as a sorted list of its elements and for any j ∈ [`] let S[j] denote
the index at the jth position of the sorted list. If any ci 6∈ D (for 1 ≤ i ≤ λ), then update
D := D ∪ {ci}. For each j ∈ [`] update vS[j] = m′j .

4. If r = 2(λ+1)δn
(ε−δλ)2 or if |D| ≥ δk then terminate and output m∗ = ~v. Otherwise rewind A2

and repeat from Step 2.

The extractor’s goal is to obtain components of m for all indices covered by a δ fraction of
index sets in C. Step 3 runs the adversary on a fresh challenge to open com∗ on all indices of
λ sampled sets from C. If the adversary passes the challenge (verification succeeds) in Step 3,
then by the security of the commitment scheme the extractor obtains the components of m on
all these queried indices. The extractor checks off any newly covered index sets and terminates
if it has already covered at least a δ fraction. Otherwise it repeats (rewinding the adversary to
use the same randomness) until the max round is reached. Finally, note that although in the
description of EA runs for r sequential rounds, observe that all the queries to A2 (Step 2) are
independent of state and thus can be run in parallel. A2 is rewound for each query, therefore
querying r copies of A2 in parallel achieves the same result. The bookkeeping in Step 3 can be
run in parallel on the outputs of all these queries.

Lemma 1 proves that the (δ, C)-PoRC from vector commitments is ε-sound for any ε >
δλ+negl(λ). In light of the above remark, the construction is PRAM strongly ε-sound with only
constant additive PRAM blowup.

Lemma 1. Assuming VC is a position binding vector commitment scheme, then for any ε-
admissible A where ε > δλ is non-negligible, the extractor EA outputs m∗ such that m∗ ≡S m
for at least a δ fraction of index sets S ∈ C except with probability 2−λ.

Proof. First recall that an ε-admissible adversary will cause the challenger to output 1 in Step
1 except with negligible probability.

From here the proof proceeds in two parts. First, we say that A = (A1, A2) is well-
behaved if whenever A1 passes Step 1 of the game PoRC-Exp(A, λ)) (i.e. presents com∗ and
m = (m1, ...,mn) to the challenger with opening Λ such that VC.Verify(com∗,m1, ...,mn,Λ) = 1)
and A2 responds to some query c with a proof πc such that PoRC.Verify(pp, com∗, c, πc) = 1 then
πc = (m′1, ...,m

′
`,Λ
′) and m′j = mS[j] for all j ∈ [`], where S =

⋃λ
i=1 Sci (the indices covered by

the query c). We claim that A is well-behaved except with probability negl(λ).
Indeed if the PoRC verification passes on πc then VC.Verify(com∗,m′1, ...,m

′
`, S,Λ

′) = 1. If
m′j 6= mS[j] on some j then com∗,m′,Λ′,m,Λ is an opening collision of the vector commitment
scheme. If this happens with non-negligible probability (conditioned on A1 passing Step 1), then
because by hypothesis A1 passes Step 1 at least with non-negligible probability ε, we can use A
to break the position binding of VC with non-negligible probability, a contradiction.

For the second part we assume that A is well-behaved. Queries c for which A2 passes
verification are “good” queries, and all other queries are “bad” queries. Consider any iteration
of the extractor where D ⊂ [n] and |D| < δk. If the extractor asks a “good” query c = (c1, ..., cλ)

15



such that cw 6∈ D for some w ∈ λ, then in Step 3 it adds cw to D increasing the size by (at least)
1. Furthermore, because A is well-behaved the extractor updates vS[j] = m′j = mS[j] for each
index S[j], j ∈ ` covered by the query. Thus at the end of each round, for any i ∈ D the vector v
is identical to m on all indices in Si, i.e. v ≡Si m. If the extractor asks a “bad” query or a query
that does not hit any new sets, i.e. cw ∈ D for all w ∈ [λ], then the size of D does not increase
in this round. The query is “bad” with at most probability 1− ε and since each cw is uniformly
sampled from [k] the latter occurs with probability at most δλ. Thus, by a union bound, in each
round the size of D increases by 1 with probability at least 1− (1− ε+ δλ) = ε− δλ.

Let r denote the total number of rounds, and let Xi for 1 ≤ i ≤ r be an indicator random
variable such that Xi = 1 if either |D| increases in the ith round or |D| ≥ δk by the ith round.
Above we established that Pr[Xi = 1] ≥ p = ε − δλ. The size of D after r rounds is at least
min(

∑
Xi, δk). Thus it suffices to establish that

∑
Xi ≥ δk with probability at least 1 − 2−λ.

The variables Xi are not independent so we cannot immediately apply the Chernoff-Hoeffding
bound. However due to the fact that Pr[Xi] ≥ p conditioned on any values of X1, ..., Xi−1, if we
define independent 0/1 variables Z1, ..., Zr such that Pr[Zi = 1] = p for all i, then it follows that
Pr[
∑

iXi ≤ δk] ≤ Pr[
∑

i Zi ≤ δk]. Finally, setting r ≥ (2δk/p) and the Chernoff-Hoeffding

bound then implies: Pr[
∑

i Zi ≤ δk] ≤ Pr[
∑

i Zi ≤ rp/2] < 2e−rp
2/2. Finally we can choose r

such that rp2/2 ≥ λ+ 1. Finally, to satisfy both conditions we set r ≥ max(2δk/p, 2(λ+ 1)/p2),
e.g. r = 2δk(λ+ 1)/p2 = 2δk(λ+ 1)/(ε− δλ)2.

2.5 Verifiable Delay Encodings

A verifiable delay encoding (VDE) is an encoding that is slow to compute yet fast to decode.
The encoding requires non-parallelizable sequential work to evaluate and therefore in theory
cannot be computed in shorter than some minimum wall-clock time. A VDE is a special case of
a verifiable delay function recently introduced in [14]. Practical (heuristic) examples of VDEs
include Sloth [31], MiMC [4], and a special class of permutation polynomials [14].

Formally, a VDE is a tuple of three algorithms VDE = VDE.Setup,VDE.Enc,VDE.Dec defined
as follows.

1. VDE.Setup(t, λ)→ pp is given security parameter λ and delay parameter t produce public
parameters pp. By convention, the public parameters also specify an input space X and
a code space Y. We assume that X is efficiently samplable. VDE.Setup might need secret
randomness, leading to a scheme requiring a trusted setup.

2. VDE.Enc(pp, x)→ y takes an input x ∈ X and produces an output y ∈ Y.

3. VDE.Dec(pp, y)→ x takes an input y ∈ Y and produces an output x ∈ X .

Correctness For all pp generated by VDE.Setup(λ, t) and all x ∈ X , algorithm VDE.Enc(pp, x)
must run in parallel time t with poly(log(t), λ) processors, and VDE.Dec(pp,VDE.Enc(pp, x)) = x
with probability 1.

Parallelism The practical significance of allowing poly(log(t), λ) parallelism in VDE.Enc is
that any implementation must have this much parallelism in order to evaluate within the delay
time t. The security property of a VDE will bound the success probability of an adversary

16



running in less than time t. If the construction demands VDE.Enc to use a significant amount of
parallelism to complete in a time t for which this sequentiality bound holds (i.e. the adversary
cannot gain further speedup) then it may only be useful for applications where the “honest” eval-
uators have this much parallelism available. Constructions that do not require any parallelism
to evaluate VDE.Enc in the optimal number of sequential steps are obviously superior. However,
it is unlikely that such constructions exist (without trusted hardware). In fact, it is necessary
that Y > poly(t) (otherwise the output can be guessed and checked quickly using VDE.Dec) and
hence the challenge inputs have size poly log(t). Therefore, at a minimum we must allow up to
poly log(t) parallelism. In practice, much of this parallelism may already be taken advantage of
by the hardware (e.g. word sizes on modern processors and/or SIMD instructions).

2.5.1 VDE security

The main security property of a VDE is σ-sequentiality, which characterizes that no adversary
running in parallel time significantly less than t is able to compute VDE.Enc on a random input
in X , even given preprocessing advice.9This captures an unpredictability property given time
constraints on the adversary.

Definition 13 (sequentiality). For a function σ(t) a VDE is σ-sequential if for any pair of
randomized algorithms A0, which runs in total time O(poly(t, λ)), and A1, which runs in parallel
time t− σ(t) on at most O(poly(t)) processors, the following probability distribution over pp←
VDE.Setup(t, λ) is negligible:

Pr

[
y ← A1(α,pp, x)

∧ y = VDE.Enc(x)

∣∣∣∣∣ x←R X
α← A0(λ,pp, t)

]
< negl(λ)

A second (stronger) property concerns the pseudorandomness of the output. Clearly the
output of VDE.Enc on an input x is not indistinguishable from random as we can run VDE.Dec
to recover the input, however we may want the property that Encode(pp, ·) is indistinguishable
from a random permutation (if X = Y) for pp sampled from the setup, similar to modeling block
ciphers as an ideal cipher. We formalize the ideal delay encoding object (for the special case of
a permutation) as an oracle in the following definition.

Definition 14. An ideal delay permutation (IDP) is a family of oracles {O(t)
IDP} that implement

a random permutation Π and respond to two types of queries. On a query (q, 0) the oracle O(t)
IDP

internally simulates t sequential queries to Π−1 and then outputs Π(q). On a query (q, 1) it
outputs Π−1(q).

Indifferentiability on random inputs One would hope to instantiate an IDP given ora-
cle access to a random permutation Π, Π−1, and any o(1)-sequential VDE. A first attempt
would be the system C which first samples pp ← VDE.Setup(t, λ) for sufficiently large λ and
then on input (q, 0) returns ι(q) = Π(VDE.Enc(pp,Π(q))) and on input (q, 1) returns ι−1(q) =

9Asymptotically t must be subexponential in λ. The reason for this is that the adversary needs to be able to
run in time at least t, and if t is exponential in λ then the adversary might be able to break the computational
security underlying σ-sequentiality. Of course, if σ-sequentiality is somehow achieved unconditionally then this
constraint no longer applies.

17



Π−1(VDE.Dec(pp,Π−1(q))). We would further hope to argue that C is indifferentiable from O(t)
IDP

in the sense of Maurer et. al. [38]. Unfortunately, due to the fact that Π used in the construction
is necessarily available to the adversary as well, the adversary can choose any value (say 0) and
query for x = Π−1(0), and then query C on input x. Since VDE is only necessarily sequential
on random inputs the adversary may be able to find an input x in this way that causes C to
output ι(x) in significantly fewer than t steps, which would enable it to distinguish C from

O(t)
IDP. Nonetheless, it is still possible that indifferentiability is achieved when the distinguisher

is restricted to random queries (and for applications that only make random queries this may
be good enough).

2.6 Depth Robust Graphs

An (n, α, β, d) depth robust graph (DRG) is a directed acyclic graph G = (V,E) on n = |V |
nodes with regular in-degree d that has the property that any subgraph of at least αn nodes
contains a path of length at least βn. We define the depth of a node v in a DRG, denoted
depth(v), as the longest path from some other node w in the graph to v. Depth robust graphs
thus have the property that any sufficiently large subgraph contains some node of high depth
in that subgraph. In fact, we can show that sufficiently large subgraphs contain many nodes of
high depth.

Claim 1. In any (n, α, β, d) DRG for constants α, β < 1, every subgraph of size (α+ δ)n nodes
contains at least bδnc nodes of depth at least βn.

Proof. Let α′ = α+δ < 1. Consider any subgraph G1 of size α′n. There exists a node v1 ∈ G1 of
depth βn. Remove v1 from G1 to form the subgraph G2. Continue this process, removing a node
vi of depth βn from the ith subgraph Gi, which can be found as long as |Gi| = α′n − i ≥ αn.
This process locates a sequence of distinct nodes v1..., vt all of depth at least βn in G1, where
t = bδnc.

For example, if G is a (n, 1/2, 1/4, d) DRG then at least 15% of the nodes in any subgraph
on 50% of the nodes have depth at least n/10.

A directed graph has B-bounded outdegree if the outdegree of any node is bounded by some
integer B. Not that any DAG with regular in-degree d has average out-degree d, however it may
not have bounded outdegree. Intuitively, any DRGs with regular in-degree should have bounded
out-degree, as otherwise one could delete many edges by removing only several nodes of high
degree, reducing the depth of the remaining subgraph substantially.

Depth robust graph constructions A classical construction by Erdős, Graham, and Sze-
meredi [43] showed how to construct DRGs explicitly from extreme constant-degree bipartite
expander graphs. Using their construction, one can obtain an (n, α, β, c log n) DRG on n nodes
for particular constants, e.g. α = 0.99 and β = 0.1, and sufficiently large n. The constant
factor c depends on the degree of the bipartite expander graphs used in the iterated construc-
tion. While explicit constructions of these graphs exist [41], they are complex and have either
large constant degree or only achieve the requisite expansion properties for a significantly large
number of nodes. Mahmoody, Moran, and Vadhan [36] use denser bipartite expander graphs to
construct for any ε < 1 a DRG family that is (n, α, α − ε, c log2 n) depth robust for all α < 1.
Again, instantiating this construction with explicit expanders will result in graphs that have an

18



impractically large degree. Alwen et. al. [6] recently improved the EGS construction to obtain
DRGs for arbitrary α, β as well and O(log n) degree (an asymptotic improvement over MMV),
however all of these constructions still require concretely high degree due to their use of bipartite
expander graphs with extreme expansion properties.

A probabilistic DRG construction compromises on explicitness, and instead outputs a graph
that is a DRG with overwhelming probability. This allows for much more efficient constructions.
For example, one can immediately replace the bipartite expander graphs in the MMV/EGS
constructions with random bipartite graphs, which are known to have strong expansion properties
with high probability. Recently, Alwen et. al. [6] proposed and analyzed a highly efficient
probabilistic DRG sampling algorithm that outputs concretely low-degree DRGs on n nodes
with with failure probability negligible in n.

Another useful property of the ABH probabilistic DRG construction is that they are locally
navigatable. That is, it outputs a graph equipped with an efficient parent function to derive the
parents of any node in the graph using polylog time and space. A probabilistic instantiation of
MMV with random bipartite graphs would also have this property. This is a critical property that
we take advantage of in our construction as it allows our prover and verifier to interactively agree
on a freshly sampled DRG with only O(1) communication and O(polylog(n)) computation/space
on the verifier. (In our application this help mitigate pre-computation attacks where the prover
may find a specific seed input to the probabilistic sampling algorithm that outputs a graph that
is not depth robust).

Definition 15. A locally navigatable DRG sampling algorithm for an (n, α, β, d)-DRG is a pair
of deterministic algorithms that share a common s-bit seed σ ←R {0, 1}s where |s| = O(n log n)
that operate as follows:

1. DRG.Sample(n, σ)→ G outputs a graph on the node set indexed by integers in [n].

2. DRG.Parents(n, σ, i)→ P outputs a list P ⊆ [n] of the parents of the node at index i ∈ [n]
in the graph Gσ ← DRG.Sample(n, σ).

DRG.Sample(n, σ) runs in time O(n log n) and DRG.Parents(n, σ, i) runs in time O(polylogn).
Finally the graph G is an (n, α, β, d)-DRG with probability 1− negl(n) over σ ←R {0, 1}s.

In practice, the s-bit size of size O(n log n) can be derived pseudorandomly from a much
smaller seed of size O(λ) given a strong pseudorandom number generator (PRNG) with security
parameter λ, or a random oracle. As n is presumed to be of feasible size, i.e. O(poly(λ)), we
do not require PRNGs with exponential stretch and thus cryptographic PRGs built from any
one-way function suffice.

In Section 5 we provide more details on our construction of locally navigatable (n, α, β, d)-
DRGs as a generalization10 of the Blocki et. al. construction to degree d ≥ 2 and discuss its
security both analytically and empirically.

2.7 Proofs of Space

A proof of space (PoS) [24] is an interactive proof between and prover and verifier that demon-
strates the prover is storing an advice string of a minimum size. The framework for proofs of

10Our generalization is actually already implicit in their paper, as it is the “meta graph” they examine in their
analysis.

19



space inherently requires a computational resource bound on the adversary. PoS constructions
are built from puzzles that have time/space tradeoffs, and the PoS guarantees that an adversary
who has not stored advice of a sufficient length will require computation exceeding this bound in
order to pass the interactive proof. If the time/space tradeoff holds in the parallel computation
model (i.e. passing the verifier’s challenge with too few bits of advice is sequentially hard) then
security can be enforced unconditionally by forcing the prover to respond to the verifier within
a time bound.

We present here a slight variant on the PoS definition from [24] that additionally incorporates
a data input D. This is a blend of the storage enforcing commitment concept and PoS. The PoS
interactive protocol involves two phases and a setup procedure.

• Setup The setup runs on security parameters λ and outputs public parameters pp for the
scheme. The public parameters are implicit inputs to the next two protocols.

• Initialization is an interactive protocol between a prover P and verifier V that run on shared
input (id,N) and P is additionally given data D. P outputs Φ and S, where S is its storage
advice and Φ is a compact O(polylog(N)) string given to the verifier.

• Execution is an interactive protocol between P and V where P runs on input S and V runs
on input Φ. V sends challenges to P , obtains back a proof π, and outputs accept or reject.

Efficiency, Completeness, and Soundness PoS protocols are required to have efficient
verification, namely the verifier should run in time O(polylog(N)). The PoS protocol has perfect
completeness if the verifier always outputs accept in interaction with an honest prover with
probability 1 over the randomness of both parties. The PoS protocol is (s, t, µ)-sound if any
adversarial prover P ∗ that runs in time complexity at most t and storage at most s during
Execution, where s = |S| ≤ N , passes verification with probability at most µ = negl(λ). We
may also express that the protocol is parallel (s, t, µ)-sound if the time bound t is in parallel
time (e.g. circuit depth, PRAM complexity, or parallel rounds of queries to an oracle). In either
case there is no time bound on P ’s running time during Initialization, other than O(poly(λ))
when the scheme’s security depends on computational assumptions about the setup parameters.
We additionally say the PoS is data committing if the output Φ is a binding cryptographic
commitment (not necessarily hiding) to the data input D.

Tight security and the space gap The space gap in a PoS is the fraction ε = (N − s)/N .
This captures the difference between the (persistent) space utilization of the best possible attack
and the honest prover’s storage. A PoS with a tighter lower bound on the adversarial prover’s
space (persistent storage) will have a smaller space gap. As the best possible attack is probably
not known, a PoS protocol with a larger space gap has a weaker security guarantee. Nearly all
known PoS protocols to date have considerably large space gaps.

The original PoS of Dziembowski et. al. [24] leaves a space gap of at least 1 − 1
512 . The

construction of Ren and Devadas from stacked bipartite expander graphs made dramatic im-
provements, but still leaves space gap of at least 1/2 (and much larger with practical parameters,
e.g. their construction requires at least degree 40 graphs to achieve a space gap of less than 2/3).
This appears fundamental to the construction, which is also not secure against parallel attacks,

20



rather than a gap in the analysis. The recent proofs of space based on function tables11 [3] has
an enormous (even asymptotic) space gap of 1− 1

64 logN .
Most recently, Pietrzak constructed an asymptotically tight PoS relying on a strong property

of the EGS depth robust graphs that was also recently proven [6]. This property (which is
stronger than normal depth robustness) is that for any arbitrarily small ε a graph Gε on N
nodes with degree O(logN/ε) can be constructed such that if any α fraction of nodes are
removed the remaining nodes contain a path of length β such that α+β < 1− ε. Using a graph
with this property, Pietrzak’s PoS then achieves a space gap of 4ε. However, the construction
relies on bipartite graphs with extreme expansion called δ-local expanders12 where δ < ε/4, and
the final graph has degree at least 10cδ logN where cδ is the degree of the δ-local expander.
Concretely, even the best known non-explicit randomized construction of a δ-expander (e.g.
Chung’s expander, which define edges by a random permutation [18]) would require degree
greater than 40 for ε = 1/2 and degree greater than 276 for ε = 1/8. To achieve just an 1/2
space gap would thus require a graph with degree d = 2, 760 logN . Even for 10-bit security the
proof size would be at least 26MB!13

2.8 Graph pebbling games

Pebbling games are the main analytical tool used in graph-based proofs of space and memory
hard functions.

Black pebbling game The black pebbling game is a single-player game on a DAG G = (V,E).
At the start of the game the player chooses a starting configuration of P0 ⊆ V of vertices that
contain black pebbles. The game then proceeds in rounds where in each round the player may
place a black pebble on a vertex only if all of its parent vertices currently contain pebbles placed
in some prior round. In this case we say that the vertex is available. Placing a pebble constitutes
a move, whereas placing pebbles on all simultaneously available vertices consumes a round. The
adversary may also remove any black pebble at any point. The game stops once the adversary
has placed pebbles on all vertices in some target/challenge set VC ⊆ V .

Pebbling complexity There are different pebbling complexity measures taking into account
how many rounds, steps, and/or pebbles are needed to finish the game from any given starting
configuration. We say that the pebbling game on graph G with vertex set V and target set
VC ⊆ V is (s, t)-hard if no player can pebble the set VC in t moves (or fewer) starting from s
initial pebbles, and is (s, t)-parallel-hard if no player can complete the pebbling in t rounds (or
fewer) starting from an initial configuration of at most s pebbles. These are the two measures we
are most interested in. If the hardness holds for any subset containing an α fraction of VC then
we write that the pebbling game on (G,VC) is (s, t, α)-(parallel)-hard. From a fixed starting
configuration P0 the number of parallel rounds required to pebble all nodes in the set VC is
equal to the maximum number of parallel rounds requires to pebble any individual v ∈ VC .

11These are the proofs of space that are being deployed by Chia Network, https://chia.net/.
12Bipartite δ-local expanders require the property that there is an edge between any δ fraction of sinks and δ

fraction of sources.
13The proof size is at least O(λd), so even for λ = 10 (i.e. 10 bit security) and N = 230 (i.e. a 32GB PoS

because each node is a 32 bytes value) the proof size would be at least 26MB. Furthermore, as ε decreases
λ = O(1/ε) to maintain the same security level. To achieve a space gap of 1/10 with 10-bit security would require
d = 19, 310 logN and λ = 60 for a proof size of at least 1GB.

21

https://chia.net/


Random pebbling games are also considered, where a challenge node is sampled randomly
from VC after the player commits to the initial configuration P0 of s vertices, and the hardness
measure includes the adversary’s probability of success. The random pebbling game is (s, t, ε)-
(parallel)-hard if from any s fixed initial pebbles the probability that a uniformly sampled
challenge node can be pebbled in t or fewer moves (resp. t or fewer rounds) is less than ε. There
is also a general correspondence between the parallel hardness of random and deterministic
pebbling games on a given graph.

Claim 2. The random pebbling game on a DAG G on n nodes with target set VC is (s, t, α)-
parallel-hard if and only if the deterministic pebbling game on G with target set VC is (s, t, α)-
parallel-hard.

Proof. Fix any P0 of size s. If the random pebbling game on G with target set VC is (s, t, α)-
parallel-hard then less than an α fraction of the nodes in VC can be pebbled individually in t
rounds starting from P0. Therefore, every subset U in VC of size α|VC | contains at least one
node that cannot be pebbled individually in t rounds, hence the (deterministic) pebbling game
is (s, t, α)-parallel-hard. Conversely, if G is (s, t, α)-parallel-hard then less than an α fraction of
nodes in VC can be pebbled individually in r rounds. Otherwise, these nodes form a subset U
of size α|VC | and they can all be simultaneously pebbled in parallel in t rounds. This implies
that the probability a randomly sampled node from VC can be pebbled in t rounds is less than
α.

Claim 3. A random pebbling game with a single challenge is (s, t, α)-parallel-hard if and only
if the the random pebbling with κ challenges is (s, t, αk)-parallel-hard.

Proof. If the random pebbling game is (s, t, α) hard then by Claim 2 the deterministic pebbling
game is (s, r, α) hard, hence there are at most an α fraction of the nodes in VC that can be pebbled
in r rounds from s initial pebbles. The probability that κ independent random challenges are
all nodes from this α fraction is at most ακ. Conversely, if the random pebbling game is not
(s, t, α) hard then the adversary can pebble all the κ challenges simultaneously in parallel time
t succeeding on each challenge individually with probability greater than α, hence succeeding
on all the challenges with probability greater that ακ.

From pebbling to graph labeling A labeling game on a degree d DAG G is analogous to the
pebbling game except that the pebbling rules are “enforced” using a cryptographic hash function
H : {0, 1}dm → {0, 1}m, often modeled as a random oracle. The vertices of the graph are indexed
in [n] and each ith vertex associated with the label ci where ci = H(i) if i is a source vertex, or
otherwise ci = H(i||`parents(i)) where `parents(i) = {cv1 , ..., cvd} if v1, ..., vd are the parents of the
ith vertex, i.e. the vertices with a directed edge to vertex i. The game ends when the player
has computed all the labels on a target/challenge set of vertices VC . A “fresh” labeling of G
could be derived by choosing a salt id for the hash function so that Hid(x) = H(id||x), and
the labeling may be associated with the identifier id. The complexity of the labeling game (on
a fresh identifier id) is measured analogously to the pebbling game, but in terms of queries to
the hash function instead of pebbles. This includes the number of labels initially stored, the
total number of queries, and the total rounds of sequential queries, etc. The labeling game is
(s, r, q, ε, δ)-labeling-hard if no algorithm that stores initial advice of size s and after receiving
a uniform random challenge node v ∈ [n] makes a total of q queries to H in r sequential rounds

22



can output the correct label on v with probability greater than ε over the challenge v and δ over
the random oracle H.

Random oracle query complexity While the pebbling complexity of the underlying graph
G provides strong intuition about the query complexity of the labeling game, proving this equiv-
alence is highly non-trivial. The “ex post facto” technique of [20] allows one to prove this when
the initial configuration of pebbles is empty and the target set VC is chosen deterministically.
Progress towards a general correspondence was made in [29, 45]. In particular, Pietrzak [45]
showed an equivalence between the parallel hardness of the randomized pebbling game and
the parallel hardness of the random oracle labeling game for arbitrary initial configurations S0.
Demonstrating (or refuting) an equivalence for the non-parallel hardness of the two games is
still open.

Theorem 2 (Pietrzak [45]). If the random pebbling game on a DAG G with n nodes and in-
degree d is (s, r, ε)-parallel-hard then the labeling game on G with a random oracle H : {0, 1}md →
{0, 1}m is (s′, r, ε, δ, q)-labeling-hard with s′ = s(m− 2(log n+ log q))− log(1/δ).

Generic PoS from graph labeling game Most PoS constructions are based on the graph
labeling game [24, 45, 46]. Let G(·) be a family of d-in-regular DAGs such that Gn ← G(n)
is a d-in-regular DAG on N > n nodes and VC(n) is a subset of n nodes from Gn. Let H :
{0, 1}dm → {0, 1}m be a collision-resistant hash function (or random oracle). Let Chal(n) denote
a distribution over [N ]λ. For each n ∈ N, the generic PoS based on the labeling game with Gn
and target set VC(n) is as follows:

1. Initialization: The prover plays the labeling game on Gn using a hash function H salted
with the proof identifier id, i.e. Hid = H(id||·). While computing the labels on all nodes
of G, the prover adds these to a vector commitment (e.g. Merkle tree) denoted com. Then
it derives λ non-interactive challenges by sampling a vector ~c ←R Chal(n) using as a seed
Hid(com). For each of the challenges c1, ..., cλ, the prover opens the label on the cith node
of Gn, which was committed in com, as well as the labels of all its parent nodes. The labels
are added to a list L with corresponding opening proofs in a list Λ and the prover outputs
the non-interactive proof Φ = (com,L,Λ). A verifier (at any point in time) accepts Φ if it
successfully verifies the openings Λ with respect to com and also that for each challenge

v ∈ [N ] with corresponding `v and purported parent labels `
(v)
1 , ..., `

(v)
d listed in L that

`v = Hid(v||`
(v)
1 || · · · ||`

(v)
d ). Finally, the prover stores as S only the n labels in VC .

2. Execution: The verifier selects κ challenge nodes v1, ..., vκ uniformly at random from VC .
The online prover uses its input S to respond with the label on v and an opening of com
at the appropriate index.

Roughly, the generic construction is a PoS when the pebbling game on G and VC is “hard” in
some pebbling complexity sense. Our security analysis will focus on parallel pebbling complexity
as this is a stronger security notion, particularly considering its general correspondence to the
parallel hardness of the labeling game in the random oracle model.

Red-black pebbling game The soundness of the generic labeling PoS is a bit more nuanced
than just the parallel hardness of the black pebbling game on G with VC . It is best abstracted

23



through the red-black pebbling game, where red pebbles correspond to incorrect labels that the
adversary computes and includes in its commitment during Initialization (i.e. where the adver-
sary cheats). We may assume without loss of generality that whenever the adversary cheats it
generates some label that does not require any space to store, essentially placing a “free” pebble
on this node. Naturally, by committing to the labels the adversary commits to all these red
pebbles during Initialization. The adversary’s choice of red pebble placements is also constrained
by the λ non-interactive challenges, which may catch these red pebbles and reveal them to the
verifier. The formal description of the red-black pebbling security game for a graph labeling PoS
construction with G(n), VC(n), and Chal(n) is as follows.

Red-Black-PebblesA(G, VC ,Chal, t):

1. A outputs a set R ⊆ [N ] (of red pebble indices) and S ⊆ [N ] (of black pebble indices).

2. The challenger samples c1, ..., cλ ←R Chal(n). If ci ∈ R for some i then A immediately loses.
The challenger additionally samples v1, ...., vκ uniformly at random from indices in VC(n)
and sends these to A.

3. A plays the random (black) pebbling game on G(n) with the challenges v1, ..., vκ and initial
pebble configuration P0 = R∪S. It runs for t parallel rounds and outputs its final pebble
configuration Pt. A wins if Pt contains pebbles on all of v1, ..., vκ.

Although we have been loosely referencing PoS (S, T )-soundness, we now formally de-
fine this for the special case of any graph labeling PoS in terms of complexity of Red-Black-
PebblesA(G, VC , t). Let c : N → N denote a cost function c : N → N representing the parallel
time cost (e.g. in sequential steps on a PRAM machine) of computing a label on a node of G(n)
for each n ∈ N.

Definition 16. A graph labeling PoS with G(n), VC(n),Chal(n) and cost function c(n) is parallel
(s, c(n)·t, µ)-sound if and only if the probability that any A wins Red-Black-PebblesA(G, VC ,Chal, t)
is bounded by µ where |S| = s.

Composition For the security of several graph labeling games to compose the independent
instances of the games must involve either independent labelings or independent hash function.
This is the function of id in the generic PoS construction from a graph labeling, which specifies
a fresh hash function Hid. In the random oracle model this is represented as a freshly sampled
random function. When this is the case the composition of k independent games is equivalent
to a single game on a large graph containing k distinctly labeled copies of the graph, where the
new distribution of Chal is a k fold direct product.

Definition 17. An (s, c(n) · t, µ)-sound graph labeling PoS with G(n), VC(n),Chal(n) and cost
function c(n) is secure under k-fold composition if and only if the graph labeling PoS with
G∗(n), V ∗C(n),Chal∗(n) is (sk, c(n) · t, µ)-sound, where G∗(n) consists of k copies of G(n), V ∗C(n)
is the union of the images of VC(n) in each copy, and Chal∗(n) is the direct product distribution
Chal1(n)× · · · × Chalk(n) where each Chali(n) is the distribution Chal(n) projected onto the ith
copy of the graph.

24



Uniform challenges In the special case that Chal is the uniform distribution over [N ]λ then
the hardness of Red-Black-PebblesA(G, VC ,Chal, t) is simply implied by the hardness of the ran-
dom black pebbling game.

Claim 4. If the random black pebbling game on G(n) is ((γ + δ)n, t, µ)-parallel-hard and Chal
is the uniform distribution over [N ]λ then the graph labeling PoS with G(n), VC(n), and c(n) is
(γn, c(n) · t,max((1− δ)λ, µκ))-sound.

Proof. The λ challenges ensure that that A wins the game Red-Black-PebblesA(G, VC ,Chal, t)
with probability at most (1−δ)λ if the number of red pebbles (i.e. |R|) exceeds δN . If |R| ≤ δN
and |S| ≤ γN , then the adversary plays the random black pebbling game with κ challenges
and an initial configuration of at most (γ + δ)N pebbles. If the random black pebbling game
(with a single challenge) is ((γ + δ)N, t, µ)-parallel-hard then A succeeds in playing this game
with κ simultaneous challenges (Step 3) with probability at most µκ (by Claim 3). Therefore,
if the random black pebbling game is hard then the adversary’s overall success probability is
bounded by the maximum of its success probability in the two cases regarding the size of R, i.e.
max(µκ, (1− δ)λ).

In this case we can also make a simple claim about the composition of a graph labeling PoS
where Chal is the uniform distribution. It follows from a general claim pertaining a graph G(n)
that is the composition of k subgraphs G1(n), ...,Gk(n) which all have the same random black
pebbling complexity and Chal samples λ challenges from the uniform distribution on each.

Claim 5. If G(n) contains subgraphs G1(n), ...,Gk(n) and for each i the random black pebbling
game on Gi(n) is ((γ + δ)n, t, µ)-parallel-hard and Chal = Chal1 × · · · × Chalk where Chali is the
uniform distribution over the indices of the nodes contained in Gi then the graph labeling PoS
with G(n), VC(n), and c(n) is (kγn, c(n) · t,max((1− δ)λ, µκ))-sound.

Proof. The λ challenges sampled from each Chali ensure that that A wins the game Red-Black-
PebblesA(G, VC ,Chal, t) with probability at most (1 − δ)λ if the number of red pebbles exceeds
δN in any subgraph Gi. Suppose there are γiN black pebbles initially on each Gi and at most δN
red pebbles (total of

∑
i γi initial black pebbles overall. The adversary plays the random black

pebbling game with κ challenges on each Gi with an initial configuration of at most (γi + δ)N
pebbles. Since the random black pebbling game on each Gi is ((γ + δ)N, t, µ)-parallel-hard then
A succeeds in playing this game with κ simultaneous challenges (Step 3) with probability at
most µκ if γi < γ. The probability A succeeds in all the k games is bounded by the minimum of
its success probabilities in each, hence its overall success probability is at most µκ if γi < γ for
any i, i.e. if

∑
i γi < kγ. Therefore, if the total number of initial pebbles is less than kγ then

the adversary’s overall success probability is bounded by max(µκ, (1− δ)λ).

Pebbling DRGs We now state several facts regarding the pebbling complexity of a depth
robust graph.

Claim 6. If G is a (n, α, β)-depth-robust DAG then pebbling any αn initially unpebbled nodes
requires at least βn rounds.

Proof. A subgraph of unpebbled αn nodes contains a path P of length βn. To pebble the entire
set of unpebbled αn nodes requires sequentially pebbling all the βn nodes along the path P .

25



Claim 7. For any α < µ < 1, the random black pebbling game on an (n, α, β)-depth-robust
DAG G is ((µ− α)n, βn− 1, µ)-parallel-hard.

Proof. Consider any µ > α. If (µ − α)n black pebbles are placed anywhere on the graph then
at least (1 + α− µ)n nodes are missing pebbles. Any subset of µn nodes of the graph therefore
include at least αn nodes that are missing pebbles. By Claim 6 these subsets require at least βn
rounds to pebble. This means that the pebbling game on G is ((µ−α)n, βn−1, µ)-parallel-hard.
The random pebbling game on G is equivalently hard by Claim 2.

PoS from DRGs The claims established thus far imply PoS soundness of the generic graph
labeling PoS on a graph G that is (n, α, β, d) depth robust, with challenge set VC = [n], and
where Chal is the uniform distribution over [n]λ. By Claim 4 and Claim 7, this PoS is ((µ−α−
δ)n, c(n) · (βn − 1),max((1 − δ)λ, µκ))-sound for any µ > α + δ. In particular, setting κ = λ
and µ = 1 − δ, the PoS is ((1 − α − 2δ)n, c(n) · (βn − 1), (1 − δ)λ)-sound. As δ can be made
arbitrarily small for an increase in λ, the space gap of this PoS is approximately α. Theoretically,
there are DRG constructions that achieve arbitrarily small α which would seem to imply tight
space-hardness. However, this space-hardness is not really tight as decreasing α decreases the
space gap but also reduces the time bound t = βn).

Lemma 2. The graph labeling PoS on a family G(n) of (n, α, β) depth robust graphs with labeling
cost function c(n) is an (s, t, µ)-parallel-sound PoS where for any δ < 1:

s = γn t = c(n)(βn− 1) µ = max((1− δ)λ, (α+ δ + γ)κ)

The composition of k independent graph labeling PoS protocols on this family of depth robust
graphs is a (k · s, t, µ)-parallel-sound PoS.

Proof. As described above, this follows from Claim 4 and Claim 7, setting γ = µ − α − δ.
Composition follows from Claim 5 because this is equivalent to a graph labeling PoS on G∗(n)
that is the concatenation of k copies of G(n) and Chal = Chal1 × · · ·Chalk where each Chali is
the uniform distribution over [i · n, (i+ 1)n)λ.

3 Proof-of-Replication

We begin with defining the syntax for a proof-of-replication (PoRep). A PoRep operates on
arbitrary data D ∈ {0, 1}∗ of up to O(poly(λ)) size for a given security parameter λ. All
algorithms are assumed to operate in the RAM model of computation (in particular reading a
bit of an input is assumed to be an O(1) operation). Parallel algorithms operate in the PRAM
model.

1. PoRep.Setup(λ, T ) → pp is a one-time setup that takes in a security parameter λ, time
parameter T , and outputs public parameters pp. T determines the challenge-response
period.14

14An alternative formulation may allow for a variable challenge-response period T that might depend on the
size of the data input. Our formulation does not allow this, implying that the online prover PoRep.Prove must
run in parallel time less than T (including transmission time of the its proof to the verifier) independent of the
data size (up to O(poly(λ)) in length). Achieving a fixed polling period T for all input data of any reasonable
length (i.e.poly(λ)) is important in practice.

26



2. PoRep.Preproc(sk,D)→ D̃, τD is a preprocessing algorithm that may take a secret key sk
along with the data input D and outputs preprocessed data D̃ along with its data tag τD,
which at least includes the size N = |D| of the data. The preprocessor operates in keyless
mode when sk = ⊥ .

3. PoRep.Replicate(id, τD, D̃)→ R, aux takes a replica identifier id and the preprocessed data
D̃ along with its tag τD. It outputs a replica R and (compact) auxilliary information
aux which will be an input for the Prove and Verify procedures. (For example, aux could
contain a proof about the replication output or a commitment).

4. PoRep.Extract(pp, id, τD, R) → D̃ on input replica R and identifier id and data tag τD
outputs the data D̃ (and verifies its consistency with τD).

5. PoRep.Prove(R, aux, id, r)→ π on input replica R, auxilliary information aux, replica iden-
tifier id, and challenge r, outputs a proof πid.

6. PoRep.Poll(aux) → r, s: This takes as input the auxiliary replica information aux and
outputs a public challenge r along with any private randomness s used to produce this
challenge. For public coin constructions s = ⊥.

7. PoRep.Verify(id, τD, r, s, aux, π)→ {0, 1} on input replica identifier id, data tag τD, public
challenge r, private randomness s (used to produce r), auxilliary replication information
aux, and proof π it outputs a decision to accept (1) or reject (0) the proof.

PoRep interactive protocol These algorithms are used in an interactive protocol as il-
lustrated in Figure 1. A PoRep protocol between a verifier V, a prover P, and data input
D with identifier id on setup parameters pp ← PoRep.Setup(λ, T ) is denoted as the system
PoRep(P(pp, id,D) ↔ V(pp, id)). The setup (whether a deterministic, trusted, or transparent
public setup, such as one involving a public random source) is run externally and pp is given
as an input to all parties. For each file D, a preprocessor (a special party or the prover when
operating in keyless mode, but not the verifier) runs (D̃, τD) ← PoRep.Preproc(sk,D). The
outputs D̃, τD are inputs to the prover and τD to the verifier.

Transparency, public coin, and public verifiability A PoRep scheme may involve a
trusted one-time setup, in which case PoRep.Setup is run by a trusted party15 and the output pp
is published for all parties to see. A transparent PoRep scheme is one in which the setup does
not involve any private information. This trusted setup is an independent, one-time procedure,
and the trusted party that runs the setup should have no further involvement in the interactive
protocol. The data preprocessor on the other hand may use a secret-key, but it is not trusted. In
particular, the verifier is oblivious to whether the preprocessor colludes with the server or not.
As we will discuss next the secret-key preprocessor only has implications for data retrievability,
but not for the security of the publicly verifiable data replication (or proof of space). This is
an important distinction from the notion of proof of data replication proposed in the system
Mirror. A PoRep scheme may be private coin if the private input r to PoRep.Poll is non-empty,
and it is public coin if r = s. A public coin PoRep has the additional desirable property that the

15As usual, the trusted party can also be replaced with a committee that runs a multi-party computation
(MPC) protocol to generate the public parameters

27



Prover Verifier

Replication Phase

1 : R, aux←R PoRep.Replicate(id, τD, D̃)

id, aux

Challenge-Response Phase

2 : r, s←R PoRep.Poll(aux)

r

3 : π ←R PoRep.Prove(R, aux, id, r)

id, π

4 : b←R PoRep.Verify(id, τD, r, s, aux, π)

Figure 3.1: The diagram illustrates the interaction between a prover and verifier in a PoRep protocol.
The setup and data preprocessing is run externally generating pp ← PoRep.Setup(λ, T ) and D̃, τD ←
PoRep.Preproc(sk,D). The challenge-response protocol is timed, and the verifier rejects any response that
is received more than T time steps after sending the challenge. This is formally captured by requiring
PoRep.Prove to run in parallel time at most T . The propogation delay on the communication channel
between Prover and Verifier is assumed to be nominal in comparison to T .

challenge output by PoRep.Poll could be replaced by a challenge derived from an unpredictable
public random beacon16.

Data preprocessing and data retrievability When the data input is preprocessed using a
secret-key the resulting PoRep is a public-coin PoR (among satisfying other properties regarding
replication and proof of space that we will discuss further in the following section on the PoRep
security model). In this scenario we can imagine the preprocessor is a single client who wants to
store (and replicate) data on a server, and generates the data tag τD to outsource this verification
work. When the preprocessor runs in keyless mode the resulting PoRep is a PoRC (Section 2.4)
with respect to the output τD, which includes a commitment to the data D. Any (stateful)
verifier that is at one point given the opening of the commitment can thereafter use the tag
to verify PoReps as standard PoRs. This is particularly useful for a setting in which multiple
clients pool their files together and want to receive a single PoRep for the entire dataset, but they
do not mutually trust one another to share a private-key. It is also appropriate for a dynamic

16Proofs-of-space-time [2] is a proposed construction that non-interactively chains several PoReps by using the
output of the last PoRep as a seed to the next, and would only work for an underlying PoRep that is public coin.

28



Prover Verifier

τ
r1

π1
r2

π2

t = 0Replica
Generation

Challenge-
response

t = tinit

t = tinit + T

t = tinit + 2T

Figure 3.2: Space-time diagram of the PoRep protocol. Following a phase of length tinit during which the
prover generates a new replica, the verifier repeatedly challenges the prover to produce a PoRep within
a challenge time period length T in order to verify that the prover is still storing the unique replica of
the original data. For this proof system to be sound it is necessary that tinit >> T .

setting where new clients are made aware of the data stored on the server and wish to verify
retrievability without trusting the original client’s private-key preprocessing.

Treating data preprocessing in this way as a separate “layer of the stack” allows for a wider
variety of constructions appropriate in different settings without impinging on the efficiency of
the underlying PoRep protocol itself. In fact, a PoRep protocol that (without preprocessing)
satisfies (δ, C)-PoRC (e.g. for C partitioning the data into constant size blocks) can immediately
be compiled into either a public-key PoR or a PoRC using any number of previous techniques.
We highlight the two scenarios:

1. A client has a data file D and uses a randomly generated secret key sk to produce D̃, τD ←
PoRep.Preproc(sk,D) which applies a rate-δ adversarial erasure code [15] to D (i.e. one
that is resilient to arbitrary adversarial deletions of up to δ fraction of the blocks in
D̃). The tag τD is a commitment to D̃. The adversarial erasure code may involve a
secret transformation using sk and requires sk as well to recover from these errors. The
private-key setting enables using more efficient erasure codes that only tolerate random
deletions because they can be combined with a secret pseudorandom permutation of the
data so that an adversary will only succeed in targeted deletions with up to negligible
probability [15, 48]. The client then uses τD for verification in the PoRep protocol, which
we assume is already a (δ, C)-PoRC with respect to τD. Any verifier V can publicly verify
that a δ fraction of the committed D̃ is retrievable (and indeed there is a public extraction
algorithm for a δ fraction of blocks in D̃), which is sufficient for the private client to recover
D using sk.

2. A keyless preprocessor transforms the data file D into a single code word of a deterministic
rate-δ optimal erasure code (e.g., Reed-Solomon) with symbol size equal to the block size
in C. It outputs τD as a deterministic commitment to D̃, which is also a deterministic
commitment to D. Due to the resilience of the erasure code (D can be recovered from any
δ fraction of the symbols in D̃), the PoRep (δ, C)-PoRC of D̃ becomes a PoRC of D.

29



Efficiency All algorithms must run in time O(poly(λ)) and with up to at most O(poly(λ))
parallelism. We don’t directly impose further efficiency requirements in the PoRep definition,
but implicitly a PoRep scheme cannot be simultaneously correct and secure unless PoRep.Poll
and PoRep.Prove have a lower parallel time complexity than PoRep.Replicate on O(poly(λ)) pro-
cessors. Otherwise, for correctness to hold the challenge-response period will be long enough
for an adversarial prover to rerun the replica generation from scratch. Furthermore, for prac-
tical purposes it is highly desirable for PoRep.Prove and PoRep.Verify to run in constant or
O(polylog(|D|)) time, where |D| is the length of the data file. Among other benefits, this en-
ables batched proofs and verification of multiple replicas of the same (or distinct) files, which
scales sublinearly in the number of replicas/files. Replica generation PoRep.Replicate runs in
time greater than max(T, |D|), however it is desirable for this runtime to be sublinear in T · |D|
as the size of the file increases.

Correctness In a correct PoRep construction, a prover who runs PoRep.Replicate and PoRep.Prove
honestly must pass verification with probability 1. In order to pass verification the algorithm
PoRep.Prove must run in parallel time at most T as otherwise the verifier will not receive the
output within the challenge-response period. In addition, PoRep.Extract must correctly extract
the original data from a replica generated with PoRep.Replicate.

Definition 18 (PoRep correctness). A PoRep construction is correct if for any security parame-
ter λ, any id and data input D, there exists Tλ such that for all T ≥ Tλ, pp← PoRep.Setup(λ, T ),
and (R, τ)← PoRep.Replicate(pp, id,D) it holds that:

Pr

[
PoRep.Verify(pp, id, r, s, τ, π) = Accept

∣∣∣∣∣ (r, s)← PoRep.Poll(pp, τ)

π ← PoRep.Prove(pp,R, id, r)

]
= 1

and PoRep.Prove(pp,R, id, r) runs in parallel time at most Tλ.17

Additionally:

Pr

[
D̃ = D

∣∣∣∣∣R← PoRep.Replicate(pp, id,D)

D̃ ← PoRep.Extract(pp, id,R)

]
= 1

3.1 Replication Security Model

An ideal security goal for PoRep protocols, beyond satisfying the standard definition of a PoR,
would be to guarantee the following properties, described informally:

1. Any prover who simultaneously passes verification in k distinct PoRep protocols (under k
distinct identities) where the input to PoRep.Replicate is a file Di in the ith protocol must
be storing k independent replicas, one for each Di, even if several of the files are identical.

2. A prover who passes verification in a PoRep protocol where the input to PoRep.Replicate
is a file D̃ = D ◦ · · · ◦ D (consisting of k copies of the same file D) must be storing k
independent physical copies of D.

30



Adverary Challenger

1 : Apre chooses ~D = D1, ..., Dk;

~id = id1, ..., idk; and computes

data tags ~τ = τD1 , ...., τDk

2 : σ, ~aux← Apre(pp, z, ~id, ~τ , ~D)

z, ~id, ~aux = aux1, ..., auxk

3 : ∀i ri ←R PoRep.Poll(auxi)

~r = r1, ..., rk

4 : ẑ, ~π ← Aonl(pp, σ, ~aux, ~id, ~r)

~π = π1, ..., πk

5 : bi ← PoRep.Verify(idi, τDi , ri, auxi, πi)

Output ẑ Output b̂ =
∧
i

bi

Figure 3.3: The diagram illustrates the PoRep security game between an adversary and a challenger.
Several inputs come from the environment, which runs the setup pp ← PoRep.Setup(λ, T ) and chooses
an auxiliary input z for the adversary. The adversary is split into two components: Apre and Aonl. They
may share initial static state but cannot communicate during the game. In particular, Aonl does not see
the input z nor ~D chosen by Apre(z). It does obtain the inputs pp, σ, ~aux. This restriction captures the

fact that σ may encode a function of auxiliary information z in addition to the replicas of ~D. Moreover,
Aonl runs in parallel time at most Tonl whereas Apre is only restricted to run in total time O(poly(λ)).

We will capture these security goals more formally through a game between a PoRep prover
(adversary) and a challenger (Figure 3.3). A high level overview of the game is as follows. The
prover/adversary is split into two components: a replication adversary and an online adversary
whose sequential running time (i.e. parallel time) is bounded by a parameter T . The replication
adversary is allowed to select the data inputs and the number of replicas k. The replicas do not
need to be of all the same files. Specifically, we represent this input as a vector D = (D1, ..., Dk)
of data files Di each of size N , where some (or all) of the files are identical. The adversary
also chooses k unique distinct identifiers for each file and k file tags. The prover can then
compute on the data (as in phase 1 of replication) to produce an advice string σ for the online
adversary as well as the auxiliary output ~aux, which includes N (the claimed size of each data
file component). The online adversary receives a vector of k challenges from the challenger and
must output k proofs. The challenger then runs the PoRep verifier on each and outputs the

17Mere existence of Tλ may seem like a weak requirement as Tλ could be arbitrarily large, however it is soundness
that will fail in this case not correctness. For both soundness and correctness to hold there must exist some Tλ
such that the honest prover can succeed in time Tλ and the cheating adversary cannot.

31



verifier’s accept/reject decision.

k-replication To capture “storing k independent replicas” we say that σ is a k-replication of
a file D if the string σ can be partitioned into k substrings σ1, ..., σk such that each allow full
recovery of the file D. Formally:

Definition 19. Let S be a data source on {0, 1}n. A string σ is a k-replication of a data sample
D = (d1, ..., dk) ← Sk if and only if there is a lossless randomized encoding scheme (enc, dec)
and a partition of σ into k substrings σ1, ..., σk such that enc(di) = σi and dec(σi) = di for all
i = 1, ..., k.

Intuitively, security goal (1) can be captured by requiring that any online adversary in
the PoRep game who is not given a k-replication of the data by the preprocessor adversary
will fail with overwhelming probability. This would imply that if several provers each provide
distinct PoReps of the same file then they are each dedicating unique resources18 to storing
the file. It would also imply that a prover who claims in a single proof to be storing multiple
replicas of a file cannot physically deduplicate its storage. Unfortunately, this security property
is impossible to achieve in a classical model of interactive computation (that does not include
timing bounds on communication19), as we explain next. Instead, we will need to relax the
security model to consider rational adversaries and bound the cost savings (measured in storage
resources) of adversaries who do not store a k-replication of the data input. The security notion
we call ε-rational replication could be informally interpreted as security against an “honest-but-
opportunistic” adversary that will only employ a malicious strategy if they stand to save more
than some ε cost doing so.

Data tag verification oracle In order to be as general as possible we don’t explicitly require
τD to be a commitment to D. Instead, we assume the existence of an oracle Ocheck that imple-
ments a verification procedure on a data/tag pair, perhaps provided additional advice aux, i.e.
on input (D, τD, aux) it returns Ocheck(D, τD, aux) → b ∈ {0, 1}. A special case is where τD is
a commitment to D, aux is the opening hint, and Ocheck runs the commitment verification. In
other scenarios Ocheck might verify signatures. As discussed previously, we allow for construc-
tions that run in a private-key preprocessor mode and the data inputs/tags are provided by the
preprocessor. For instance, they may be data authentication tags like in a more standard PoR
scheme.

Definition 20. PoRep-Exp(A)(z, pp) = (ẑ, b̂) is the PoRep game experiment (defined in Fig-
ure 3.3) with adversary A = (Apre,Aonl) on inputs z, pp from the environment, represented as a

random variable where ẑ is the output of A and b̂ is the challenger’s output. OutA(pp, z) = ẑ is
the random variable representing the first component of PoRep-Exp(A)(z, pp), and SuccA is the
probability that b̂ = 1.

Definition 21 (Admissible PoRep adversary). For any pp← PoRep.Setup(λ, T ) a PoRep game
adversary A = (Apre,Aonl) is admissible for the experiment PoRep-Exp(A)(z, pp) if Apre runs

18The provers may be storing all the replicas on the same hard-drive, hence PoReps alone do not give a
meaningful guarantee of fault-tolerant data storage.

19Consider a model with network communication round trip bounds and distance between parties. Two servers
claim to be in two different locations and are each storing a replica of the same file. We could use distance
bounding protocols combined with proofs of retrievability to verify the claim [52]

32



in O(poly(λ)) and Aonl runs in parallel time at most T . The adversary A is µ-admissible if
additionally Apre chooses data inputs ~D and tags ~τ where for each i there exists auxi such that
Ocheck(Di, τDi , auxi) = 1 and SuccA ≥ µ.

3.1.1 Impossibility of ideal replication security

Suppose that the PoRep adversary stores the replicas in a string σ. The adversary can then
“sabotage” the replication by using say the first λ bits of σ as a key to encrypt the rest, and store
the transformed string σ′ that includes the λ bit key and ciphertext. Since the adversary can
efficiently decode σ from σ′ it will still pass the protocol with the same success probability (i.e.
it efficiently decodes σ′ and retrieves σ, and then follows whatever protocol behavior it would
have initially on σ). Indeed, such “scrambling” attacks are impossible to prevent as there is
always a trivially fast way to encode/decode one’s state in a way that destroys the k-replication
format. We state this formally in the following proposition. Our proof is in the random oracle
model for simplicity, although an analogous statement can be proven in the plain model from
symmetric key encryption (i.e. PRPs) as long as |σ| > λ (this will always be true for A that
succeeds on | ~D| > λ, i.e. causes the challenger to output 1 with non-negligible probability).

Proposition 1. For any admissible adversary A = (Apre,Aonl) there exists an admissible
adversary A′ = (A′pre,A′onl) (with access to a random oracle H) such that for all pp, z and
~D = (D1, ..., Dk) chosen by Apre for any k > 1 the distributions PoRep-Exp(A)(z, pp) and

PoRep-Exp(A
′)(z, pp) are identical and for σ, σ′ output by Aonl/A′onl respectively (in Figure 3.3,

line 3), at most one of σ, σ′ is a k-replication of ~D and yet |σ′| = |σ|.

Proof. A′ runs exactly as A with the following modifications. A′pre runs Apre until Line 2 of the
game, obtaining σ, ~aux. If |σ| = 1 then A′pre outputs σ, ~aux and A′onl on a 1-bit σ runs exactly
like Aonl. By hypothesis k > 1, hence a 1-bit σ is not a k-replication by definition. In case
|σ| > 1, then let σ0 denote the first bit of σ. A′pre computes H(σ0) = r, truncating the output
of H such that |r| = |σ| − 1 (as Apre runs in time O(poly(λ)) we may assume w.l.o.g. that the
output of H is longer than σ) and sets σ′ = σ ⊕ 0||r. Note that only the first bit of σ′ (i.e.
σ0) contains information about σ. All substrings of the remaining |σ| − 1 bits are uniformly
distributed (they have zero mutual information with the remainder of σ). Therefore, assuming
that σ is a k-replication of ~D, then σ′ is not a k-replication for k > 1. Finally, A′onl receives σ′,
computes r = H(σ0) by reading the first bit of σ′, and then recovers σ = σ′ ⊕ 0||r. Then A′onl
uses σ to run Aonl. The output is identical to PoRep-Exp(A)(z, pp).

3.1.2 Rational adversary model

Given the impossibility of achieving PoRep security entirely based on cryptographic guarantees,
we turn instead to a framework of modeling attacks based on incentives. A rational adversary
model has been used many times before in related works. In fact, it is implicit in proofs of
space where security is reasoned via time/space tradeoffs [40] rather than challenge-response
timing, which is necessary in proofs of space that are not parallel sound [3,46]. Storage enforcing
commitments [28] were a precursor to PoR in which the prover must dedicate a minimum amount
of storage in order to pass the protocol for a committed file F (preprocessed by a client with
a secret key). The protocol does not guarantee that the prover is actually storing F , however
a prover who does not would “waste” the space as it cannot use this space to store any other

33



“meaningful” data. Hourglass schemes [51] were proposed as a generic method to prove that a
server is storing data encoded in a specified format, in particular for the use cases of encryption-
at-rest and file watermarking. Proof of data replication can be viewed as a special case of this
type of protocol, where the encoding is redundant. The system Mirror [7] considered proofs
of data replication in a different setting, namely as a private-verifier PoR in which the server
replicates the client’s initially preprocessed file. Recall that this setting is fundamentally different
from ours as the proofs rely on client preprocessing and are not publicly verifiable proofs of space.
Location based storage proofs (LoSt) use distance bounding protocols to attempt to provide an
even stronger claim that data is being stored in several different geographic locations [52]. The
threat model considered in all of these works is an adversary that acts to minimize its costs,
measured in storage or work (and combinations thereof).

In our setting, independent from any client setup/preprocessing, any prover that passes k
independent PoRep interactive protocols on k data file commitments should not save any costs
by running a strategy that does not store a recoverable copy of the file in each protocol, even
if this involves storing duplicate copies of the same file. The same holds if the prover passes
a single PoRep interactive protocol on a single committed data file that contains redundant
data. More precisely, for any successful strategy there is another “well-behaved” and efficiently
computable strategy satisfying k-replication that uses no more than a factor 1/(1 − ε) more
storage, i.e the adversarial strategy saves at most an ε fraction of the storage by deviating
from honest k-replication. Importantly, this “well-behaved” strategy should still retain all the
information that the original adversary was storing, which we capture by saying that the new
strategy simulates the output distribution of the original adversary in the security game. We
call this security notion ε-rational replication.

Security under composition A challenge that arises in both defining and proving ε-rational
replication for PoReps is showing that adversarial strategies do not save costs even in compo-
sition with other protocols, in particular in the presence of auxiliary data on the server. While
composition is always a security challenge often overlooked, it is especially salient here. One
might think it would be sufficient to show that the adversary cannot compress its replicas by en-
coding them in a different (malicious) format that no longer preserves replication. However, we
must also consider that the adversary may be able to use the replica storage to help store other
useful information on its hard drive. Suppose, for instance, that the (incompressible) replicas
could be used as a seed to compress this auxiliary data, yet in a way that also entangles the
seed together with the auxiliary data, destroying the replication format (i.e. a weak compression
Definition 5). In this case, the adversary may actually save costs by deviating.

Fisch and Silas [27] showed that proving this is likely impossible without strong knowledge
assumptions. Their analysis focussed on the “weak compression attack” described above, where
the PoRep storage could be used as a seed to compress auxiliary data in a way that also destroys
the replication format. One might hope to prove rational security by showing that any adversary
who weakly compresses auxiliary data in this way can be converted to a better adversary that
compresses its auxiliary storage just as well without destroying its replicas, i.e. coverts the weak
compression to a strong compression (Definition 6) that would save the seed independently in
its original format. However, they prove that any black-box reduction of strong compression to
weak compression for a given class of sources would yield a universal compression scheme for
that class in the random oracle model. In other words, proving this is as hard as constructing
a universal compression scheme that works on any source in the class.

34



“Knowledge-of-compression” assumptions In light of their result, Fisch and Silas propose
using a “knowledge of compression” assumption. Intuitively, any adversary who knows a way to
compress auxiliary data z using an incompressible string s must only be taking advantage of the
compressibility of z, hence entangling z together with s should not help. Specifically, the minimal
assumption proposed in their paper is that any adversary who can compute a weak compression
of z with an independent uniformly sampled seed s can also extract a strong compression of z.
They also remark that some PoS constructions are proven secure by showing that the advice
output s directly encodes part of a random oracle’s function table, and in this case the minimal
assumption suffices to show that any weak compression involving the PoS advice s as a seed
can be converted to a strong compression. Unfortunately, this property is not true of PoReps
because the underlying PoS advice actually encodes the committed data file D.20 Therefore, we
require a stronger knowledge of compression assumption that applies to any incompressible seed
s, even where the incompressibility applies only to strictly time bounded compression schemes.

Definition 22 (Time bounded incompressibility). A source S is (T1, T2)-incompressible to k bits
if there does not exist (for any constant δ) a δ-lossy strong compression scheme (enc, dec) where
enc runs in parallel time T1 and dec runs in parallel time T2 that compresses S to k − log(1/δ)
bits.

Assumption 1 (Knowledge of strong compression). Let S and X be any two samplable sources
over {0, 1}n such that S is (T1, T2)-incompressible to (1 − ε)n bits for some ε < 1. For any
compression scheme (enc, dec) that compresses S × X to m bits where enc runs in parallel time
T1 or dec runs in parallel time T2, there exists a strong compression scheme (enc∗, dec∗) running
in parallel time T1 and T2 respectively that compresses X to length m − (1 − ε)n bits sampling
seeds from S. Moreover, for any algorithm A that on inputs S and n outputs (enc, dec), there
exists an efficient “extractor” which observes A’s internal state and outputs (enc∗, dec∗).

Definition of rational replication We will fix several notations regarding discrete probabil-
ity distributions before presenting our formal definition of ε-rational replication. If X is a 0/1
random variable with probability mass function pX and Y is a discrete random variable on the
same probability space then pX |Y : Sup(Y )→ R is the function pX |Y (w) = Pr[X = 1|Y = w].
If f, g are two real valued functions on a set Ω then f � g if and only if f(w) ≥ g(w) for all
w ∈ Ω, i.e. f is an upper bound on g.

Finally, for any two random variables X,Y let X(λ)
λ
≈ Y (λ) denote that the distributions

of X and Y are computationally indistinguishable.21

Definition 23 (Rational replication). A PoRep construction is a µ-sound ε-rational replication
if for any µ-admissible adversary A = (Apre,Aonl) there exists an admissible adversary A′ =

(A′pre,A′onl) such that for all pp, z sampled by the environment and ~D = (D1, ..., Dk) chosen by
Apre, and for σ, σ′ output by Aonl/A′onl respectively (in Figure 3.3, line 2) then for all z from
the environment and pp← PoRep.Setup(λ, T ) it holds that:

20The security might still be proven by showing how to encode a random oracle table using S together with
D [45], but the remark in [27] no longer applies in this case. Moreover, the prover can even choose D to be
correlated with the auxiliary data z.

21The standard definition of computationally indistinguishable distributions with respect to a security parameter
λ is that no poly(λ) time algorithms can distinguish samples from the two distributions except with probability
negligible in λ.

35



1. |σ| ≤ (1− ε)|σ′|

2. σ′ is a k-replication of ~D

3. OutA′(pp, z)
λ
≈ OutA(pp, z) and SuccA′ |OutA′(pp, z) � SuccA|OutA(pp, z).22

Necessary and sufficient conditions for ε-rational replication PoReps satisfying ε-
rational replication are implicitly proofs of space with an ε space gap. The converse is not
necessarily true, i.e. ε-tight proofs of space are not immediately PoReps satisfying ε-rational
replication. Furthermore, unless τD is binding to D relative to Ocheck, meaning that for any τD
there does not exist (or it is computationally difficult to produce) D′ 6= D and aux′, aux such
that Ocheck(D, τD, aux) = Ocheck(D

′, τD, aux
′) = 1, then it is unclear how a scheme could satisfy

our definition (or any meaningful definition of replication security for that matter where the
adversary is allowed to choose the data). If Ocheck is not binding then even rational replication
security would likely fail because the adversary could find an alternative data input D′ 6= D
consistent with the same tag and run the rest of the protocol successfully on D′ as if it were the
input. Formally, this would fail our security definition if any adversary that stores a k-replication
of the original data input D could not output the same distribution (e.g. the adversary’s output
ẑ is some function of z and D′).

Implicit PoS protocol If a PoRep construction satisfies Definition 23 then PoRep.Setup,
PoRep.Replicate, PoRep.Prove, and PoRep.Verify implicitly define a secure PoS as follows:

• Setup runs PoRep.Setup(λ, T )

• Initialization The prover runs R, aux ←R PoRep.Replicate(id, τD, D̃) and outputs τD = aux and
S = R.

• Execution The verifier’s challenge is r ← PoRep.Poll(aux) and the prover responds with the
proof π ← PoRep.Prove(R, aux, id, r). The verifier runs PoRep.Verify(id, τD, r, aux, π).

We say that a PoRep scheme is an (s, t, µ)-sound PoS if its implicit PoS protocol is an
(s, t, µ)-sound PoS (see Section 2.7, or Definition 17).

Lemma 3 (PoS is necessary). If a PoRep is a µ-sound ε-rational replication then it is an
((1− ε)kN, T, µ)-sound PoS.

Proof. Suppose not, i.e. there is some PoS adversary that succeeds in passing verification with
probability greater than µ using only (1− ε)kN storage.

Let ~D be a vector of k identical copies of an incompressible data input D. By incompressible,
we mean that for any randomized enc/dec scheme such that Pr[enc(dec(D)) = D] = ξ then
|enc(D)| ≥ N − log(1/ξ) where N = |D|. It follows that any k-replication of D must be at least
kN bits long because by definition it can be partitioned into k substrings each of which are a
deterministic encoding of D. Now take the PoS adversary APoS who is able to pass Execution
within time T with (1− ε)kN storage and construct APoRep = (Apre,Aonl). Apre simulates the
Initialization phase for APoS to obtain the outputs (Φ, S). It then sets aux = Φ and σ = S.

22This says that for any value of ẑ the probability A succeeds given that it outputs ẑ is bounded by the
probability that A′ succeeds given that it outputs ẑ.

36



Then for each challenge query, Aonl simulates the Execution phase for APoS , passing it Φ and
S. Thus, by assumption Aonl succeeds (i.e. the challenger outputs b̂ = 1) with probability
greater than µ. In other words, APoRep is µ-admissible. Now, since |σ| ≤ (1 − ε)kN it cannot
be a k-replication of D due to the fact that D is incompressible and any k-replication of D
must be at least kN bits long. In fact, if any (A′pre,A′onl) outputs σ′ where σ′ is a k-replication
of D then |σ′| ≥ kN > |σ|/(1 − ε). On the other hand, by the hypothesis that the PoRep is
a µ-sound ε-rational replication, there exists some (µ − negl(λ))-admissible A′ that outputs a
k-replication σ′ (Condition 3 + Condition 2) such that |σ′| < |σ|/(1− ε) (Condition 1). This is
a contradiction.

Implicit PoRC protocol If the data tag τD is binding to the data input D and ~aux is a
binding commitment to the replica R then a PoRep may implicitly define a (δ, C)-PoRC protocol
of (D,R) with respect to (τD, aux) (Section 2.4). The cover C in this case is the set of pairs of
blocks (Ri, Di) such that R is defined to be the correct output of PoRep.Replicate(idi, τD, D),
Di is the ith block of D, and Ri is the ith block of R. The setup just runs the PoRep setup
and outputs parameters pp. The PoRC.Prove and PoRC.Verify procedures simply run the PoRep
prover and verify procedures.

• PoRC.Commit(pp,D): Run PoRep.Preproc(sk,D) to obtain the data tag τD along with D̃.
Then run PoRep.Replicate(id, τD, D̃) to get (R, aux). Save the hint Λ = (R, id). Output the
commitment com = (τD, aux).

• PoRC.Open(pp, com,Λ): Parse Λ = (R, id) and com = (τD, aux). Next run the extraction
procedure PoRep.Extract(pp, id, τD, R) to obtain D. Query b ← Ocheck(D, τD, aux). If b = 0
output ⊥ otherwise output (D,R).

• PoRC.Prove(pp, com,Λ, c): Parse Λ = (R, id) and com = (τD, aux). Generate the PoRep proof
π′ as PoRep.Prove(R, aux, id, r) output the PoRC proof π = (π′, id).

• PoRC.Verify(pp, com, c, π): Parse com = (τD, aux) and π = (π′, id). Output the result b of
PoRep.Verify(id, τD, c, aux, π

′).

We say that a PoRep scheme is a µ-sound δ-PoRC if its implicit (δ, C)-PoRC protocol as just
described is µ-sound (see Definition 12).

The following powerful lemma establishes criteria that along with Assumption 1 are sufficient
for ε-rational replication. This greatly simplifies the analysis for any PoRep construction that
is also implicitly a secure public-coin PoRC protocol.

Lemma 4 (Sufficient conditions for rational replication). Given Assumption 1, if a PoRep
construction with setup parameters T, λ satisfies the following conditions for some integer c:

(a) It is correct (see Definition 18)

(b) It is a µ-sound (1− δ)-PoRC, and the parallel runtime blowup of the extractor is less than
a factor c, i.e. it is PRAM strongly µ-sound (see Definition 12).

(c) k independent PoReps are a parallel ((1−ε+δ)kN, (c+1)T, µ)-sound PoS (see Section 2.7,
or Definition 17).

37



then the PoRep construction is a µ-sound ε-rational-replication.

Proof. The outline for the proof is as follows. We consider any µ-admissible PoRep adversary
A = A = (Apre,Aonl) and construct the “well-behaved” adversary A = (A′pre,A′onl) that satisfies
the three conditions of Definition 23. Since A is µ-admissible for each i it chooses each Di, τDi
and outputs auxi such that Ocheck(Di, τDi , auxi) = 1. A µ-admissible PoRep adversary is also a
µ-admissible PoRC adversary in the implicit (1− δ, C)-PoRC protocol. Hypothesis (b), that the
implicit (1−δ, C)-PoRC protocol is µ-sound, by definition means there exists a public extraction
algorithm EA that A′onl could run with Aonl to extract at least a (1− δ) fraction of the correct
blocks in each (Ri, Di), denoted by (R∗i , D

∗
i ). Let R∗ = (R∗1, ..., R

∗
k) and D∗ = (D∗1, ..., D

∗
k). EA

runs in time at most c · tonl where tonl < T is the runtime of Aonl (by the assumption that A is
admissible).

We show (in Subclaim 1) that Apre, Aonl, and EA can be used to construct a lossless com-
pression scheme (enc, dec) that encodes EA’s output R∗ and A’s output ẑ = OutA(pp, z) in
PoRep-Exp(A(pp, z), where enc(R∗, ẑ) = (σ∗, aux) such that |σ∗| ≤ |σ|+ negl(λ) and dec runs in
total time cT . On the other hand, we show (in Subclaim 2) that Hypothesis (c) implies that R∗

is (poly(N), (c+1)T, µ)-incompressible to (1−ε)kN bits. Together with Assumption 1, Subclaim
1 and Subclaim 2 imply that A′onl can compute a new strong compression scheme (enc∗, dec∗)
that uses R∗ as a seed to encode compress ẑ to |σ∗| − (1 − ε)kN ≤ |σ| − (1 − ε)kN + negl(λ)
bits. Finally, A′pre outputs σ′ = R||enc∗(R∗, ẑ) and the same ~aux, and A′onl uses dec∗ to recover
ẑ. Note that |σ′| ≤ |R|+ |σ| − (1− ε)kN + negl(λ) = |σ|+ εkN + negl(λ). A′onl finally runs the
honest PoRep.Prove so SuccA′ = 1 and OutA′ ≈ OutA are identically distributed.

The existence of this A′ for any µ-admissible adversary A shows that the PoRep satisfies
µ-sound ε-rational replication. It satisfies OutA

′ ≈ OutA and SuccA′|OutA′ � SuccA|OutA.
The the advice σ′ includes R and is thus a k-replication of D (Condition 2) with |σ′| ≤
εkN + |σ|+ negl(λ) ≤ ε

1−ε |σ|+ |σ|+ negl(λ) ≤ |σ|/(1− ε) + negl(λ) (Condition 1).

Proof of Subclaim 1: Let R denote the distribution of R∗ extracted by EA over the random-
ness of EA, Apre, and Aonl. Note that because A is µ-sound R∗ always contains a 1− δ fraction
of the blocks of R, where R is the correct output on the input D chosen by Apre except with
at most probability negl(λ) (that either the binding of Ocheck is broken or the extraction fails).
Let Z denote the distribution of ẑ given the fixed environment inputs z, pp. By simulating the
game for A and running the extractor EA we can perfectly sample both of these distributions.
The sampled values R∗ and ẑ are given as input to enc along with aux and the randomness ρ
used in the sampling. The randomness ρ and aux will be shared by both enc and dec so we treat
this as a seed.

• enc uses ρ to deterministically rerun Apre to obtain σ and sets enc(ρ,R∗, ẑ) = σ.

• dec runs EA with inputs σ and ~aux to extract R∗ from Aonl (in parallel time at most c · tonl)
and outputs R∗ while also using ρ to rerun Aonl on a given challenge vector to obtain ẑ. dec
outputs R∗ and ẑ. Hence, (enc, dec) is a strong compression scheme on the source R×Z with
loss negligible in λ, i.e. Pr[dec(ρ, enc(ρ,R∗, ẑ) = R∗, ẑ] > 1 − negl(λ). Finally, by Fact 1, it
can be converted to a lossless compression with a negl(λ) increase in output length.

Proof of Subclaim 2: As R is the correct output of PoRep.Replicate and the PoRep construc-
tion is a ((1 − ε + δ)kN, (c + 1)T, µ)-sound PoS, R is (poly(N), (c + 1)T, µ)-incompressible to
(1 − ε + δ)kN bits. Otherwise, for some µ′ > µ an adversary could compress R during the

38



replication phase to (1 − ε + δ)kN bits and store this µ′-lossy compression as its advice. It
could then recover R in the challenge-response phase with probability µ′ and run the honest
PoRep.Prove in total parallel time less than (c + 1)T . This adversary would break the pre-
sumed PoS soundness. Likewise, as R∗ consists of a 1 − δ fraction of blocks from R, it is
(poly(N), (c + 1)T, µ)-incompressible to (1 − ε)kN bits, because compressing R∗ to (1 − ε)kN
bits is equivalent to compressing R to (1− ε+ δ)kN bits.

Remark on δ loss: Lemma 4 requires that the PoRep has only a ε−δ space gap as PoS in order
to prove it satisfies ε-rational-replication, where δ is the loss in the PoRC. The reason this affects
the proof that the PoRep is ε-rational-replication is entirely due to the environment auxiliary
input z and the need to show that the adversary A′ can still output the same distribution
(including the function of z) as the adversary A. (This necessitated constructing A′ that extracts
the replica R from A). If this requirement were dropped (or the auxiliary input z is empty) then
conditions (a) and (c) suffice without any δ loss, i.e. if the PoRep is correct and a (1− ε)kN, T )-
sound PoS then it is ε-rational secure. The reason is that A′ could just run the honest replication
strategy, where σ′ = R and |R| = kN . Any adversary that causes the challenger to output b̂ = 1
must use σ of size at least (1− ε)kN by the PoS soundness.

What is missed by simply composing PoR and PoS? It is instructive to consider simply
combining a proof of retrievability (PoR) with a proof of space (PoS) as a trivial candidate
PoRep. For a file D of size N , the honest prover would use N bits of storage to produce a PoS
and separately store D. First, this results in at least a factor two space gap (the gap between
the honest prover’s total space usage and the lower bound on an adversary’s space). The more
criticial issue is that the adversary is clearly incentivized to only use N bits of storage for the
PoS and drop the file entirely, provided that it can recover the file from another source. There
is explicitly a factor two added cost for storing the file in addition to producing a proof of space.
A prover is strongly incentivized to deduplicate its storage. In other words, this protocol fails
ε-rational replication for any ε < 1, nor does it have data-independent costs. Thus we can
see that at a minimum our definition requires that PoReps are simultaneously a PoS and PoR
without costing the miner any extra space to store the entire file (or some encoding thereof that
allows full recovery).

Space utilization There is still a silly way to combine PoS and PoR to achieve ε-rational
replication without imposing another efficiency requirement on the construction that has to do
with space utilization. Suppose a PoS of N bits guarantees that the adversary is using at least
δN bits (while the honest prover uses N bits). The trivial PoRep construction on a file D of
size N would be a δ-PoS on m >> N bits (say m ≥ kN) combined with a PoR of D. The
naive prover following this protocol uses at least (k + 1)N bits, while an adversary must use
at least δkN bits. The additional cost to this adversary of storing D is at most N bits, for a
total storage of (δk+ 1)N , which is an ε = 1/(δk) overhead. This can be made arbitrarily small
by increasing k. More generally, we can modify any PoRep scheme that is both a PoR and a
δ-PoS to operate on padded data D||0m for m = k|D| so that there is ony an ε = 1/(δk) cost to
additionally storing the file. However, at the same time, this generic construction utilizes only
an ε fraction of the prover’s total space for useful storage. Ideally, we would like a construction
that utilizes most of the space, independent of ε. Restricting to PoRep constructions that can

39



be tuned to satisfy ε-rational replication using O(N) space even as ε→ 0 excludes these wasteful
constructions.

Private-verifier setting We note that these subtleties in defining proofs of replication are
also relevant in the private-verifier setting of proofs of data replication. They were missed in the
security model proposed by Mirror [7], whose definition is in fact satisfied by even the trivial
combination of a PoS and PoR. Mirror’s security definition compares the adversary’s storage
to the storage of a prover who stores both the original file D and r replicas specified by the
protocol. Consider the trivial construction in which each “replica” is simply an independent
proof of space initialization, and the verification procedure involves a PoR of D along with r
PoS verifications. Since in this setting the data file is chosen by the verifier/challenger and is
assumed to be incompressible, the adversary must use as much space as the honest prover in
order to pass verification.23

3.1.3 Security for decentralized storage networks

As we touched upon in the introduction, a primary intended use-case for PoReps is as a protocol
that will help both incentivize and monitor file storage in a distributed network of nodes, which
are compensated by the network in return for storing client data. Critically, these nodes are
not directly compensated by the client. Rather, they are compensated for storing any data as
long as the network verifiers (distinct from clients submitting data) can publicly verify they are
storing the data. In fact, the network protocol may aggregate data pieces from several clients
together and pass that to a storage node.

If clients were to pay storage nodes directly, say by putting a lump sum of money in escrow
that the storage node receives in installments for continuing to store the file, then PoReps aren’t
necessary. The role of network verifiers would be to verify that the storage node is still storing
the client’s file using a standard proof of retrievability with outsourced verification, and then
approve transfer of installment funds from the escrow account to the storage node. The storage
node has nothing to gain from colluding with the client. It is only when we want the network
itself to incentive storage participation from a source external to the client/node that PoReps
actually become relevant.

The main thesis of the Filecoin [1] protocol is that by double using PoReps as a “proof-of-
resource” (i.e in place of proof-of-work) and proof-of-storage both the network and the client
simultaneously benefit.24 The network rewards the storage miners by printing inflationary re-
wards (similar to mining rewards for Bitcoin proofs-of-work miners), thereby subsidizing the
cost of file storage. Notice how this application of PoReps as a “useful” proof-of-storage to mine
Filecoin and subsidize storage costs is extremely sensitive to the security property of PoReps.
Consider a PoRep such as the naive combination of PoS and PoR, which does not satisfy ε-
replication (for ε < 1). A miner would actually double its profits in Filecoin mining rewards by
deduplicating storage because it could now use the extra storage space to generate twice as many
proofs of storage. Morever, miners could double their Filecoin rewards by producing PoReps for
useless files that the prover generates from a small seed instead of storing real client data (called
the “generation attack” in [2]. This means that Filecoin miners will charge even more to use
their space to store user files, raising rather than subsidizing the cost of storage. More generally,
if the PoReps do not have data-independent costs then the Filecoin mining rewards could have

23It satisfies Mirror’s definition of δ-binding as long as the PoS has at most a 1− δ space gap.

40



adverse effects on storage costs, driving miners to increase the cost of some files while lowering
the cost of others.

.

4 Constructions

In all of the constructions we describe in this report we will skip the description of PoRep.Preproc.
The data is preprocessed in one of the modes described, and we start with the preprocessed data
D̃ and data tag τD. We also assume there is an external verification procedure that the verifier
may query on any block di of the file D̃, its position i, and τD, which returns a result that we
denote by Ocheck(di, i, τD)→ b ∈ {0, 1}.

Building blocks All constructions use a VDE scheme {VDE.Setup,VDE.Enc,VDE.Dec} with
identical input space and code space over {0, 1}m for some m = O(λ) determined by the VDE
setup, as well as a hash function H : {0, 1}∗ → {0, 1}m modeled as a random oracle (i.e. mapping
strings of arbitrary length to strings of length m).

The construction DRG-PoRep uses DRG.Sample(n, d), which outputs an (αn, βn, d) depth
robust graph with probability 1 − negl(n) for d = O(log n). In the Section 5 we discuss in-
stantiations of DRG.Sample and how d can be chosen to target different values of the constants
0 < β < α < 1 (both analytically and empirically given our implementation of the best known
attacks). In particular, in DRG-PoRep the value of α must be very small, as this will determine
the ε-rational security of the scheme (in fact ε = α).

The latter two constructions also use a vector commitment scheme with algorithms VC.Setup,
VC.Com, VC.Open, and VC.Verify.

Security parameters Each PoRep scheme will take two security parameters λ, κ as input.
The parameter λ determines the overall security level of the construction (e.g. 80-bit, 128-bit,
256-bit), whereas the parameters κ determines the soundness of the “online” proofs generated
by PoReP.Prove. Since these are run repeatedly in a challenge-response protocol, we leave open
the possibility that certain applications may target a non-negligible online soundness error such
as 1/1, 000, 1/100 or even 1/3. Each challenge-response proof will be subject to this soundness
bound independently thus security is amplified against a prover that tries to cheat many times.
We will discuss how concrete choices for each of the schemes impact security/efficiency.

4.1 Basic PoRep from Verifiable Delay Encodings

A very basic PoRep construction is simply to use the VDE scheme to derive a unique replica
Rid as a slow encoding of the file F on a given id. This scheme was already sketched in [14],

24Decentralized transactional networks that follow the Nakamoto paradigm for consensus, i.e. proof-of-work
blockchains, require consensus nodes to produce some form of “proof-of-resource” to ensure Sybil resistance.
Depending on its instantiation, this proof-of-resource may also contribute global costs to transacting by adding
an expense to transaction processing. Often these systems reduce the local impact of this cost on transaction fees
by printing an inflationary reward that goes directly to the consensus node processing the transaction (although
the inflation silently taxes the economy). This has the effect of subsidizing the cost of transacting, the same way
that governments may use inflation to subsidize food or economic activity to stimulate an increase in GDP. It has
been observed that the inflationary reward is more than just a subsidy mechanism, as it is actually critical to the
security of Nakamoto consensus [39]

41



which generalized a scheme originally proposed by Sergio Demian Lerner [33], although neither
works provided a formal security analysis. During the challenge-response period, the verifier
periodically checks that the server has been persistently storing the encoding Rid by challenging
the server for Rid itself. If the delay parameter of the VDE scheme is set appropriately relative
to the verifier’s polling period, then a prover that has deleted the replica Rid at any point
during the polling period will not be able to re-derive the encoding in time to respond to the
verifier’s challenge. We also need to ensure that the replicas on two different ids are independent,
and cannot be derived from one another more quickly than deriving each from scratch. The
relevant security property of a VDE scheme is that on any independent random challenge it
is sequentially hard to compute, even given a polynomial number of prior encodings of other
points. We can enforce the independence of inputs by using a random oracle25 H applied to the
replica id. Specifically, instead of encoding F directly, we encode F ⊕H(id). Recovery of F is
still possible as id is known to the decoder. Technically, as F may consist of multiple blocks
of length m we will encode each ith block individually XORed with H(i||id). The verifier only
needs to challenge for a randomly sampled constant number of the encoded blocks (and check
them individually) in order to ensure that no more than an ε fraction have been deleted.

Lerner’s initial proposal of this protocol used a Pohlig-Hellman cipher as a weak instantiation
of the VDE and also focussed on the special use-case of proving unique storage of a copy of a
fixed file known to all the verifiers (it was proposed as a way to prove unique storage of a copy
of a blockchain). In our case, we need to adapt the protocol to handle data files specified only
by their commitment tag τD that may be initially unknown to the verifier. The PoRep needs to
still be a PoS in this case. Fundamentally, for this to be secure the slow replica encoding must
depend on this tag. Otherwise, the prover can first set the PoRep replica to any arbitrary value
and then run the data extraction algorithm on a particular id to find data consistent with this
replica. This requires only a simple modification which is to use both id and τD as input to the
random oracle H.

4.1.1 Basic-VDE-PoRep

PoRep.Setup(λ, T ) → pp Set ∆ = 2T and run VDE.Setup(∆, λ) → ppvde. This specifies the
block length m, and provides implicit input parameters to VDE.Enc and VDE.Dec. Lastly the
setup specifies an integer ` = `(λ) of size O(λ).

PoRep.Replicate(id, τD, D̃)→ R, aux Parse D̃ as a file of N blocks d1, ..., dN each a string in
{0, 1}m. For each i compute Ri = VDE.Enc(di ⊕ H(id||τD||i)). Output R = (R1, ..., RN ) and
aux = N .

PoRep.Extract(id, τD, R)→ D̃ ParseR = (R1, ..., RN ) and for each i compute di = VDE.Dec(Ri)⊕
H(id||τD||i). Output D̃ = (d1, ..., dN ).

PoRep.Poll(N)→ r For i = 1 to ` randomly sample ri ←R [N ]. Output r = (r1, ..., r`).

PoRep.Prove(R,N, id, r) → π Parse R = (R1, ..., RN ) and r = (r1, ..., r`). Output the proof
π = (Rr1 , ..., Rr`).

25The random oracle can be replaced with a collision-resistant hash function if only a pebbling adversary is
considered in the security analysis.

42



PoRep.Verify(id, τD, r,N, π)→ 0/1 Parse the proof π = (π1, ..., π`) as ` strings in {0, 1}m. For
each i = 1 to ` do:

1. Compute d̂i = VDE.Dec(πi)⊕H(id||ri)

2. Query bi ← Ocheck(d̂i, ri, τD)

If bi = 1 for all i then output 1 (accept), otherwise output 0 (reject).

VDE instantiation We can instantiate the basic PoRep construction with the Sloth [32]
VDE. With a block size of m = 4096 and time delay T of 10 minutes the Sloth decode takes ap-
proximately 0.15 seconds. For the same target delay with m = 512 decoding takes approximately
3 seconds. These were measured on a 2.3 GHz Intel Core i7.

Replication time For a target polling period of 5 minutes, choosing the block size gives a
tradeoff between proof size and initialization time. With a block size of m = 4096 and time
delay T of 10 minutes, replication of files up to 50KB (N = 100) takes approximately 1 hour
on 16 parallel cores. With block size m = 256 we can only support files up to 320 bytes for
replication under 1 hour. If instead we fix the file size (e.g. up to 50KB) but decrease block size
by a factor κ, then we both increase initialization time by a factor κ and decrease proof size by
a factor κ.

Proof size The proof size is a constant `m bits independent of the file size. To ensure (with
soundness error δ) that no more than an ε fraction of the blocks have been deleted the number
of queries ` should be set to ` = log(δ)/ log(1− ε). For example to detect deletion of 1% of the
data blocks with soundness error 1/3 we would require ` ≈ 100, in which case the proof might
as well include the entire replica for N < 100. To detect deletion of 5% with soundness 1/3 only
requires ` ≈ 20. For 80% we can set ` ≈ 5.

Correctness and Security Correctness is immediate from the construction and correctness
of the underlying primitives. The construction’s rational security is optimally tight, i.e. it
satisfies µ-sound ε-rational-replication for any arbitrary ε < 1 and µ = negl(λ). We provide the
formal analysis in Section 6 (Theorem 3). The construction is also therefore a tight26 (Lemma 3).

Erasure code preprocessing In combination with an optimal rate 1− ε erasure code during
preprocessing then it becomes perfectly rational for the prover to store a recoverable encoding of
the file because even if it deletes an ε fraction of the blocks it will still be perfectly recoverable.
Likewise, if the prover generates k independent replicas of a file D then because it uses (1−ε)kN
space overall it can store εN blocks of each replica so that D is still recoverable from each.
Increasing the tolerance of the erasure codes results in an increase in replica size, but may justify
reducing the tightness of the PoS/rational-replication security (i.e. reduce ε). For example, on
N = 100 blocks, setting ε = 0.01 and using an erasure code that recovers from 1% deletion
results in only a 1% increase in file size but reducing a proof that is equal in size to the original

26Although the VDE based PoRep is a concretely tight proof of space with practical proof sizes, unlike other
proofs of space in the literature it does not have an efficient execution time, which scales quadratically as O(NT ) =
O(N2) where T is the time delay parameter.

43



Data File Replica

D̃1
VDE.Enc(D̃1 ⊕H(id||i)) R1

D̃2
VDE.Enc(D̃2 ⊕H(id||i)) R1

...
...

...

D̃N
VDE.Enc(D̃N ⊕H(id||N)) RN

Figure 4.1: Illustration of PoRep.Replicate in the basic PoRep construction using a VDE.

file. On the other hand if ε = 0.20 and D is preprocessed with an erasure code that tolerates
20% deletion, then we trade an increase in the replica size by 20% for a proof size of only 6% of
the original file size.

4.2 Block Chaining Encodings

Clearly the Basic-VDE-PoRep is impractical for large file sizes. A 1 GB size file with block size of
512 bytes would take over 13 days to replica on a machine with limited parallelism. Increasing
the block size to reduce replication time impacts proof size and is also limited by the message
space of the VDE scheme. VDE schemes like Sloth operate on relatively small input spaces as
larger input spaces are more susceptible to parallelization attacks. The fundamental issue in
the Basic-VDE-PoRep construction is that the VDE (tuned for the polling period delay T ) is
applied individually to each block of the file thus allowing a fully parallel attacker to derive the
entire replica within time T whereas it takes a non-parallel prover take time TN . One might
consider relaxing the security requirement to preclude excessive parallel attacks and reduce the
time delay T required to encode each block. However, any attacker who uses only a factor k
more parallelism will be able to reduce replication time by a factor k. Thus, for any reasonable
factor k advantage (over honest provers) that an attacker may achieve, the time to replicate for
the honest provers be at least a factor k times longer than the polling period. Furthermore,
with the current verification strategy of randomly sampling ` blocks to challenge, the prover
can re-derive the specific challenged blocks in total time `T (or parallel time T with only `
parallelism).

A natural way to reduce the overall replication time while maintaining the sequential hard-
ness is to chain the encodings of each block, similar to encryption in block chaining cipher
modes. A simple chaining would modify PoRep.Replicate in the Basic-VDE-PoRep by deriv-
ing from each Ri (encoding of block di) a key ki = H(id||Ri) to be used in the encoding
Ri+1 = VDE.Enc(di+1⊕ ki) (of block di+1) as shown in Figure 4.2. Each Ri can still be decoded
locally given only Ri−1 as Di = VDE.Dec(Ri ⊕ ki) where ki = H(id||Ri−1). We would then re-
duce the time delay T for each call to VDE.Enc such that T ·N is equal to the desired replication
time.

44



Enc

D0

R0

H

id

τD

Enc

D1

R1

H

id

τD

Enc

D2

R2

H

id

τD

· · · · · · Enc

Dn

Rn

H

id

τD

· · · · · · Enc

Dn

Rn

H

id

τD

Figure 4.2: Basic-VDE-PoRep in CBC-mode (insecure).

The problem with this basic chaining method is that it has a smooth time/space tradeoff.
An adversarial prover can store only each kth block (reducing overall storage by a factor k)
and yet it can recompute any individual block with only k calls to VDE.Enc. With sufficient
parallelism it can re-derive the entire replica in time kT instead of NT , and worse yet it can
respond to the verifier’s ` random challenges in time kT with only ` parallelism. As a result to
ensure the server is storing at least 1/k fraction of blocks the replication time must be at least
a factor N/k longer than the polling period.

Dependency graphs One way to characterize the issue with the simple cipher block chaining
method is that the dependency graph of the block encodings is not depth robust. Let each block
of the file represent a node in a graph where a directed edge is placed between the ith node and
the jth node if the encoding of the jth block of the file depends on the encoding of the ith block.
The resulting graph is a directed acyclic graph (DAG). By the properties of H and VDE.Enc the
dependencies are cryptographically enforced: if the jth block is dependent on the ith block then
the jth encoding cannot be computed unless the ith encoding is known except with negligible
probability (although proving this formally is non-trivial and will take some work later). If the
dependency graph is (α, β) depth robust then deleting any αN fraction of the encodings will
contain a dependency path of length βN inside the deleted subgraph, meaning that it will require
at least βN sequential calls to VDE.Enc to re-derive the deleted blocks. On the other hand, the
dependency graph of the cipher block chained Basic-VDE-PoRep is a line, and as demonstrated
by the time/space tradeoff attack described above it is at most (1− 1/k, k/N) depth robust for
any k < N (as storing only every kth node partitions the deleted set of nodes into lines of length
k). More generally we can consider the parallel pebbling complexity of the dependency graph
(Section 2.8).

4.3 DRG PoRep

The construction DRG-PoRep [26] extends the Basic-VDE-PoRep by chaining block dependencies
using a depth robust chaining as described above. As a PoS, it can be viewed as the generic PoS
from the graph labeling game (Section 2.8) on a depth robust graph, where the random oracle
queries are combined with VDE queries to introduce more asymmetry between initializing the
PoS and extracting data from it. Using an (N,α, β, d)-DRG we are able to reduce the time
delay T for each block encoding as N increases, such that the total time NT remains the same

45



c1

d1

c2

d2

c3

d3

c4

d4

c5

d4

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

Figure 4.3: Illustration of block dependency DAG configurations in cipher block chaining encodings.
On the left is a simple chain (as in the chained Basic-VDE-PoRep) whereas the right depicts a mock
depth robust chaining. For each chained encoding, the ith encoding is derived as Ri ← Enc(ki, di) where
ki = H(id||parents(i)) and parents(i) denotes the set of encodings on nodes j with a directed edge to i.

and the polling period is tuned to βTN . A prover that deletes more than an α fraction of the
block encodings will not be able to respond to challenges correctly (and quickly enough) during
the challenge-response period. This achieves α-rational replication and replication time that is
a factor 1/β longer than the polling period. The security can be amplified using stronger DRGs
for smaller α > 0, at the cost of increasing the degree by O(1/α) as well as the replication time
relative to polling period.

As in the generic PoS from labeling games, the protocol separates out two kinds of proofs.
As a part of the aux output during the replication the prover generates a proof that the depth
robust chaining of the encodings were “mostly” correct. Unlike in the Basic-VDE-PoRep where
the verifier can completely verify the correctness of a block using VDE.Dec, here the verifier
cannot check that all the correct dependencies were enforced as this would not be a compact
proof. Here, the prover will first derive the entire encoding (consisting of labels on each node
of the graph) and provide the verifier with a compact vector commitment to these labels. The
verifier will query for several randomly sampled nodes of the graph and challenge the prover to
open the commitment to labels on both this node and the labels on all of its parent nodes. The
verifier can then check that the encodings correctly observed the dependency. This convinces
the verifier that a constant fraction of the nodes in the graph are correct. Because the graph
is (α, β) depth robust, the (sufficiently large) subgraph of correct nodes is also depth robust.
Put another way, the small fraction of incorrect labels do not help the adversary any more
than putting several additional initial pebbles on the graph “for free”. The proof is made
non-interactive using the Fiat-Shamir heuristic.

The second “online” proof is a simple proof of retrievable commitment. The verifier simply
challenges for several indices of the prover’s vector commitment to the replica block encodings
and the prover sends back these openings.

4.3.1 DRG-PoRep

PoRep.Setup(λ, κ, T ) → pp: The setup obtains as input security parameters λ, κ, as well as
the delay parameter T , sets ∆ = 2T/(βN − 1) to be the VDE delay parameter and runs
ppvde ← VDE.Setup(λ,∆). This determines a block size m and M = {0, 1}m. The setup then

46



runs ppvc ← VC.Setup(1λ, Nmax,M) where Nmax is the maximum supported data length27.
Finally the setup also defines two integers `1 = `1(λ) and `2 = `2(κ). The setup outputs
pp = (ppvde, ppvc,m, `1, `2).

PoRep.Replicate(id, τD, D̃)→ R, aux: The input to the replicate procedure is the preprocessed
data file D̃ consisting of N blocks of size m, along with data tag τD and replica identifier id.

1. Apply random oracle H(id||τD) = σ. Implicitly σ defines a graph G← DRG.Sample(N, σ),
however the prover does not need to run this function explicitly as it will use the parent
function instead.

2. Parse D̃ as data blocks (d1, ..., dN ), each di ∈ {0, 1}m. We define the following subroutine
DRGEnc that operates on ~d,m,N, and σ and outputs the replica R.

DRGEnc(~d,m,N, σ){
for i = 1 to N :

(v1, ..., vd)← DRG.Parents(N, σ, i)

ki ← H(σ||cv1 || · · · ||cvd)

ci ← VDE.Enc(ppvde, ki ⊕ di)
R← (c1, ..., cn)

return R}

3. Compute vector commitment comR, τR ← VC.Com(ppvc, R).

4. Now use H to derive the (non-interactive) a challenge vector ρ = (ρ1, ..., ρ`1) by com-
puting ρi = H(σ||comR||i). Set Cnodes = (cρ1 , ..., cρ`1 ). For each i set parents(ρi) ←
DRG.Parents(N, σ, ρi) and set Cparents(ρi) = (cv1 , ..., cvd) where {v1, ..., vd} = parents(ρi).

5. Compute vector commitment opening proofs on the indices specified by the challenges:

Λ← VC.Open(ppvc, C
nodes, ρ, τR)

for i = 1 to `1 :

Λi ← VC.Open(ppvc, C
parents(ρi), parents(ρi), τR)

6. Output R and aux = comR, σ, ρ, C
nodes, Cparents(ρ1), ..., C

parents(ρ`1),Λ,Λ1, ...,Λ`1 .

PoRep.Poll(N)→ r: For i = 1 to `2 randomly sample ri ←R [N ]. Output r = (r1, ..., r`2).

PoRep.Prove(R, aux, id, r) → π: The input is the replica R = (c1, ..., cN ), id, aux output of
replicate (which includes comR), a challenge vector ~r = (r1, ..., r`2). Derive σ = H(id||τD). Set
~c = (cr1 , ..., cr`2 ). For each ri also derive parents(ri) ← DRG.Parents(N, σ, ri), set Cparents(ri) to
be the concatenation of cj for all j ∈ parents(ri) (ordered by increasing indices), and compute

kri = H(σ||Cparents(ri), i). Set ~k = (kr1 , ..., kr`2 ).

Compute Λ← VC.Open(ppvc, comR,~c, ~r, τR). Output π = (Λret,~c,~k).

27Some vector commitments, such as a Merkle commitment, do not require specifiying the data length in the
setup. In this case Nmax =∞.

47



PoRep.Verify(id, τD, r, aux, π): Parse the input aux as a list of values comR, σ, ρ, Cnodes,
Cparents(ρ1),...,C

parents(ρ`1), Λ, Λ1,...,Λ`1 as well as the input π = Λret,~c. Parse π = (Λret,~c,~k).

1. First verify aux.28 Check H(id||τD) = σ and H(σ||comR||i) = ρi for each i = 1 to `1. If
any checks fail output 0 and terminate. Next derive parents(ρi) ← DRG.Parents(N, σ, ρi).
Run the following verifications on the vector commitment openings Λ,Λ1, ...,Λ`1 :

b0 ← VC.Verify(ppvc, C
nodes, ρ,Λ)

for i = 1 to `1 :

bi ← VC.Verify(ppvc, C
parents(ρi), parents(ρi),Λi)

If b0 ∧ b1 ∧ · · · ∧ b`1 = 0 then output 0 and terminate.

Finally for each cρi ∈ Cnodes the key ki = H(σ||cv1 || · · · ||cvd) where {v1, ..., vd} = parents(ρi)
and compute di ← VDE.Dec(ppvde, ki⊕cρi) and query the check oracle b← Ocheck(di, ρi, τD).
If b = 0 output 0 and terminate.

2. Second verify the “online” proof π. First compute b ← VC.Verify(ppvc,~c, ~r,Λret). Next
for each i ∈ [`2] compute di ← VDE.Dec(ppvde, ki ⊕ cri) and query the oracle b′i ←
Ocheck(di, ri, τD). Output b ∧ b′1 ∧ · · · ∧ b′`2 .

Replication and extraction time The main achievement of the DRG PoRep construction
is its scalable replication time, which is now a fixed multiple of the polling period (dependent
only on α, β) and in particular is independent of the number of blocks in the file. The extraction
time is also optimal, as any block can be locally decoded by applying the hash function H to
d = O(log n) labels and making a single call to VDE.Dec, which should take under 1 second.

Batched vector commitment openings In the construction description above we listed the
vector commitment openings Λ, Λ1,...,Λ`1 for Cnodes and all Cparents(ρ`i) separately inside the
parameter aux, and they were verified separately as well. This was done mostly for clarify of
presentation. This would be necessary if the vector commitments are instantiated with Merkle
commitments. However, one of the major advantages of using vector commitments with batch-
able openings is that these can all be compressed to a single constant size opening. In this case
aux only includes the labels Cnodes and all Cparents(ρ`i) for each i along with a single opening
proof Λ.

Vector commitment storage If the prover uses a Merkle tree as its vector commitment then
it will either need to additionally store the hashes on internal Merkle nodes or recompute them
on the fly. At first glance this may appear to destroy the tightness of the PoS because storing
the Merkle tree is certainly not a PoS. However, because the time/space tradeoff in storing this
tree is so smooth the honest prover can delete the hashes on nodes on the first k levels of the
tree to save a factor 2k space and re-derive all hashes along a Merkle path by reading at most 2k

nodes and computing at most 2k hashes. If k = 7 this is less than a 1% overhead in space, and
requires at most 128 additional hashes and reads. Furthermore, as remarked in [45] these 2k

28In the interactive protocol, as long as the verifier is stateful then the input aux only needs to be verified the
first time the verifier runs PoRep.Verify on its first poll as it can remember the verification result for subsequent
polls.

48



reads are sequential memory reads, which in practice are inexpensive compared to the random
reads for challenge labels.

Relaxing soundness: interaction and time/space tradeoffs The size of `1 is a significant
factor in blowing up the size of aux. The reason why in general we need to set `1 to be large
is that otherwise the prover can brute force a favorable challenge in the non-interactive proof.
There are two ways to improve on this. First, we could get rid of the non-interactive proof in aux
and required the verifier to challenge the prover for a fresh aux proof on their first interaction.
Second, the non-interactive challenge “grinding” attack ignores the fact that the prover will
need to rerun replication many times in expectation. As this is already a memory/sequentially
hard computation (taking at least around 10-60 min), we can relax the security model to assume
there is some bound on the initial computation that the malicious prover is willing to do in order
to save a fraction of space during the online phase. If we can just achieve soundness 1/1000
instead of 2−80 then even a massively parallelized prover will need to grind in expectation for
3.47 days. For this soundness level we can set `1 ≈ 100.

Proof sizes There are two types of proofs, the “offline” non-interactive proof contained in
aux and the “online” proofs output by PoRep.Prove. The proof contained in aux is much larger
(although it is only sent once to each verifier, which amortizes the cost). The proof size in aux
is `1(d+ 1)m+L(N,m, `1(d+ 1)) where L(N,m, `1(d+ 1)) is the size of the vector commitment
opening proof on a vector of length N of elements of size m. As aux is non-interactive the
soundness error needs to be exponentially small, therefore we set `1 = λ/ − log(1 − α). For
example with λ = 80 and α = 0.20 this is `1 = 825. However, as described above, in practice
we could set `1 = 100 if we are willing to assume a malicious prover will not find it rational to
work for 4 days to save a fraction of the space. With d = 5 and m = 128 the total proof size is
approximately 10 KB, independent of the data input size. Note that the data input size could
range up to gigabytes or terabytes.

Compressing proofs with SNARGs We can further compress the size of the aux proof by
using SNARGs, or any other form of succinct proofs. To maximally compress the proof size,
the prover can compute a SNARG over the circuit PoRep.Verify with the proof π as a witness.
To optimize the performance of this SNARG it would be important to choose instantiations of
vector commitments and slow encodings that minimize the multiplicative complexity of checking
inclusion proofs and decoding. If the main cost in the proof size comes from the degree d of
the DRGs (see Section 5), then we can already substantially decrease the proof size by using
SNARGs only to eliminate the parent nodes of each ci. In this case, the SNARG would only
prove knowledge of d encodings c1, ..., cd, their valid inclusion proofs in comR at the appropriate
positions, and that ki = H(c1, ..., cd). We can also replace the hash function H with a suitable
key-derivation function (KDF) that minimizes multiplicative complexity. Since the proof of
security holds in the random oracle model, it is important that the KDF should retain properties
similar to a random oracle. At a minimum it needs to be collision-resistant.

The Jubjub29 Pedersen hash over BLS12-381 is an attractive candidate as it achieves a circuit
complexity of only 4 multiplication gates per input bit (61,440 gates per Merkle commitment
opening with a 32GB file). This can be used to instantiate both Merkle commitments and the

29https://z.cash/technology/jubjub.html

49

https://z.cash/technology/jubjub.html


function H. If the VDE is instantiated with Sloth++ [14] over the scalar field of BLS12-381, then
verification of a 5 min delay involves roughly 6 million multiplication gates. This is due to the
fact that Sloth++ iterates a square-root round function 30 million times. However, with a 1GB
file the delay T will be reduced drastically, e.g. with β = 1/100 it will require only 3 iterations
of the Sloth++ round function. Furthermore, if a longer delay (on the order of 5 minutes) is
necessary then we can instead use a VDE based on inverting permutation polynomials over Fp
described in [14], which is a nominal added cost in combination with the Merkle inclusion proof.
For sequential security this would require tuning the polling period to the time it would take a
prover running on an industry standard GPU as the polynomial GCD computations do admit
some parallelism. The total circuit size for verifying aux with m = 256, N = 230, d = 20, and
`1 = 100 is approximately 124 million gates, and would take approximately 5 hours to compute
on a single-threaded 2.4 GHz Intel E7-8870 CPU [12]. With modest parallelism (e.g. 16 threads)
this can easily be reduced to below the raw replication time.

Towards both tight and efficient PoReps The DRG-PoRep construction improved signif-
icantly on replication time while maintaining terrific extraction efficiency. However, it com-
promised on ε-rational security and the tightness of the proof of space. In order to achieve
ε-arbitrarily small, we required DRG graphs that were robust in ε-fraction subgraphs. Not only
does this degrade the practicality of the DRG construction, it also worsens the gap between
polling and replication time, which necessarily increases as O(1/ε). Thus it does not really
achieve arbitrarily small ε-rational security in the same sense as Basic-PoRep. Furthermore, by
increasing dependencies between blocks, erasure code preprocessing is no longer guaranteed to
recover the file from arbitrary deletion of an ε fraction of the blocks (only the εN topologically
last blocks).

Pietrzak [45] also proposed using depth robust graphs for proofs of replication and presented
a slightly different construction to DRG-PoRep that partially resolves the issues of space-tightness
in an elegant way. The construction uses the recent [6] DRGs which are (n, α, β,O(log n/ε))-
depth robust for all (α, β) such that 1 − α + β ≥ 1 − ε. Instead of embedding the data on all
nodes of the graph, the construction generates a graph on 4n nodes, but only encodes the data
on the topologically last n nodes. The replication procedure still generates a labelling of the
entire graph upon which the last n block encodings are dependent, but only outputs the labels
on the last n nodes. Pietrzak shows that a prover who deletes an ε′ fraction of the labels on
the last n nodes will not be able to re-derive them in fewer than n sequential steps. The value
ε′ can be made arbitrarily small however ε < ε′/4, so the degree of the graph must increase as
1/ε′. Furthermore, although the graphs in [6] achieve asymptotic efficiency and are incredibly
intriguing from a theoretical perspective, they still do not have concretely practical degrees
(their asymptotic degree starts to kick in on graphs with over a billion nodes).

Pietrzak’s construction did not incorporate delay encodings into the DRG PoRep construc-
tion and this could easily be added just as in DRG-PoRep. If only SHA256 is called for each
labeling this means that only graphs of a minimum size over 1 billion nodes can achieve a 10
min delay. SHA256 can be intentionally slowed with iterations, but then extraction becomes
as inefficient as the replica generation. Hence the main advantage of the VDEs is in lowering
the gap between extraction/replication on graphs of smaller size. However, since Pietrzak’s
construction only embeds the data on the last level the data extraction is already as inefficient
as data replication (the labels on the first 3n labels needs to be re-derived before the data can
be extracted), hence the VDEs will not help as much.

50



5 Instantiating Depth Robust Graphs

DRG-PoRep requires an (n, ε, δ, d) DRG where ε, δ < 1 and d ∈ polylog(n). In general for
performance we want to minimize ε and d while maximizing δ. Recall that the value of ε
determines the ε-rational-security achievable, and space gap of the construction as proof of
space. The degree impacts the PoRep proof size and verification complexity, which is O(λd).

Explicit Depth Robust Graphs Erdős et. al. [43] showed how to construct DRGs explicitly
from extreme constant-degree bipartite expander graphs. Using their construction, one can
obtain an (n, α, β, c log n) DRG on n nodes for particular constants, e.g. α = 0.99 and β = 0.1,
and sufficiently large n. The constant factor c depends on the degree of the bipartite expander
graphs used in the iterated construction. While explicit constructions of these graphs exist [41],
they are complex and have either large constant degree or only achieve the requisite expansion
properties for a significantly large number of nodes. Mahmoody et. al. [36] use denser bipartite
expander graphs to construct for any ε < 1 a DRG family that is (n, α, α − ε, c log2 n) depth
robust for all α < 1. Again, instantiating this construction with explicit expanders will result in
graphs that have an impractically large degree. There is a new construction by Alwen et. al. [6]
that improves asymptotically on MMV, but not concretely.

Probabilistic Constructions If we compromise on explicit constructions then we can in-
stead use probabilistic methods to sample much simpler graphs with more practical concrete
parameters that satisfy the desired depth robustness property with high probability. Intuitively,
since random graphs have good expansion properties in expectation, we can replace the explicit
expanders used inside the DRG constructions with randomly sampled graphs instead. Alwen et.
al. [5] proposed and analyzed a more direct probabilistic DRG sampling algorithm that outputs
a (n, 1−α/ log n, β, 2) DRG on n nodes with failure probability negligible in n. Their construc-
tion can be easily modified to output a (n′, 1 − α, β, c log n′) DRG on n′ = O(n/ log n) nodes
for some fixed constant c. Unfortunately, their analysis only shows that the output graph is a
DRG with good probability for very high values of 1−α. On the other hand they provide strong
empirical evidence that the output graph retains depth robustness for much smaller subgraphs
than analyzed theoretically, and thus provides hope that a tighter analysis would yield much
better values of α (and even β).

5.1 Bucket Sampling

The starting point of our DRG sampling algorithm is the algorithm of Alwen et. al. [5], which
produces a degree-2. The algorithm is extraordinarily simple. It is a small tweak on a random
DAG, sampling d edges for each node at index v randomly from the preceding nodes at indices
u < v, but biasing the selection towards nodes that are closer to v.

The construction operates on nodes with integer indices in [n]. First, a directed edge connects
each node u to its successor u + 1. Next, let Bi = {(u, v) : 2i−1 ≤ |v − u|} where u, v ∈ [n] are
the integer indices of nodes u and v respectively. For a given node v, let Bi(v) denote the set
of all u′ < v such that (u′, v) ∈ Bi, i.e. it contains the nodes u that are within a “distance” in
the range [2i−1, 2i] from v. For each node v, a bucket Bi with i ≤ log2v is selected uniformly
at random and then finally a random node u ←R Bi is selected. The edge (u, v) is added to the
graph.

51



BucketSample[n]{
V := [n]; E := ∅
for v = 2, ..., n :

E := E ∪ {(v − 1, v)}
i←R {1, ..., log2 v}; u←R Bi(v)

E := E ∪ {(u, v)}
return(V,E)}

BucketSample[n,m]{
(V,E)← BucketSample[nm]

W := [n]; E′ := ∅
for(i, j) ∈ E :

ui ← i % n; uj ← j % n

E′ := E′ ∪ {(ui, uj)}
return(W,E′)}

This construction, denoted BucketSample[n], outputs a graph that is asymptotically block
depth robust with overwhelming probability. Furthermore, if the sampling is fixed by a seed σ to
a pseudorandom generator then BucketSample[n] is both deterministic and locally navigatable.
The function DRG.Parents(n, σ, v) is naturally defined by the construction, which would use the
seed σ to sample the parents of node v. The definition of block depth robustness is as follows.

Definition 24 (ABH17). A (n, α, β,m, d) block depth robust graph is directed acyclic graph G
with d-regular indegree on n nodes indexed by integers in [n] such that if any set S of size (1−α)n
and its left neighborhood set Dm(S) = {x ∈ G : ∃u ∈ Ss.t.0 ≤ u−x ≤ m} are removed, then the
graph G \Dm(S) contains a path of length at least βn.

The bucket sampling algorithm of Alwen et. al. [5] outputs a (n, 1 − c1/ log n, β, c2 log n, 2)
block depth robust graph with failure probability negligible in n. Note that (n, α, β,m, d) block
depth robustness is only possible for m(1−α) < 1−β, so the bucket sampling algorithm outputs
a graph whose block depth robustness is within a constant factor (i.e., (1 − β)/(c1c2)) of the
optimal. According to the concrete lower bounds on parameters proved in their analysis, for β =
0.03 they get m(1−α) > 160·2.43×10−4 > 0.038, which is within a factor 25.5 of optimal. Next,
we show how to use the block depth robust BucketSample[n] construction to construct larger
degree DAGs with better depth robustness. The construction BucketSample[n,m] outputs a
graph on n nodes of degree m that is a “factor” m more depth robust, i.e. improves (n, 1−α, β, 2)
depth robustness to (n, 1− αm, β,m+ 1) depth robustness.

“Metagraph” construction Suppose we are given an algorithm that for any (sufficiently
large) n outputs a graph that is (n, 1 − α, β,m, d) block depth robust. We construct a new
graph G on nodes in [n] of degree dm as follows. First construct a graph G′ on nodes in [nm].
We define the graph G such that there is a directed edge from node i to node j if and only if G′

contains a directed edge (u, v) for some u ∈ [(i− 1)m+ 1, i ·m] and v ∈ [(j − 1)m+ 1, j ·m]. It
is easy to see that if G′ has in-degree d then the graph G has in-degree at most dm. Following
the terminology of Alwen et. al., we call G the metagraph of G′, which can also notate as
G = G′m. Using the underlying DRG construction BucketSample[n] the corresponding metagraph
construction BucketSample[n,m] actually has degree at most m+1 because one of the two edges
is to the immediate predecessor.

We prove the following lemma, which essentially says that G inherits the absolute depth
robustness of G′ except now on a vertex set of 1/m the size.

Lemma 5. If G is an (mn, 1 − α, β,m, d) block depth robust robust graph then its meta graph
Gm is (n, 1− αm, β, dm) depth robust.

52



Proof. Denote by Bi the interval [(i − 1)m + 1, i ·m] of nodes in G. Let B = {B1, ..., Bn}. As
noted in the graph construction, each node of the meta graph Gm corresponds to one of the
intervals Bi ∈ B, and has degree at most dm. Consider removing at most e = αmn nodes
from Gm. This corresponds to removing at most e of the intervals in B from G. By the block
depth robustness of G, since e = αmn then the remaining set of nodes in G contains a path of
length βmn. Any path of length βmn nodes in G must intersect at least dβne ≥ βn intervals
in B because a path intersecting at most k < βn intervals of length m would contain at most
km < βmn nodes. This implies that there remains a path of length at least βn in the meta
graph Gm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·106

0

2

4

·105

e

d

BucketSample[220, 1]

BucketSample[220, 5]

BucketSample[220, 10]

BucketSample[220, 20]

Figure 5.1: Results of the attacks against BucketSample[n,m] for m = 1, 5, 10 and n = 220.
We plot on the y-axis for each value of e < n on the x-axis the smallest depth among any
of the subgraphs of size n − e that any of the attacks were able to find. For example, with
BucketSample[n, 5] the attacks could not locate any subgraph on 70% of the nodes that had
depth below n/4. With BucketSample[n, 20] the best attack on 10% subgraphs reduced the
depth to n/64.

Analytical and empirical results Looking under the hood in the analysis of [5], the meta-
graph Gm with m = 160 log n is analytically a (n, 0.961, 0.3, 160 log n) depth robust graph with
overwhelming probability. Alwen et. al. also give an empirical analysis on their 2-regular
graph construction for n = 224 nodes where they implement the best known depth reducing
attacks to locate subsets of various sizes that contain short paths. The graph in their paper
shows pairs (d, e) where d is the lowest depth found in any subgraph of size at least n − e.
For example, their experiment results show that for e = 0.2 × 107 the smallest depth found
was around 4 × 106 ≈ 0.24n nodes, suggesting that the sampled graph is (224, 0.88, 0.24, 2)
depth robust. We implemented the same attacks against the larger degree graphs output by
BucketSample[n,m], which are mostly based on a classical algorithm by Valiant [50] for locating a
depth reducing set, shown below in Figure 5.1. The empirical results suggest that the graph out-
put by BucketSample[n, 5] on n = 220 is (n, 0.70, 1/4, 6) depth robust, that BucketSample[n, 10] is

53



(n, 0.28, 1/32, 11) depth robust, and that BucketSample[n, 20] is (n, 0.10, 1/64, 21) depth robust,
retaining high depth even in 10% subgraphs.

6 Formal security analysis

This section applies the framework and definitions of Section 3 to formally analyze the security
of the two constructions Basic-VDE-PoRep and DRG-PoRep. The focus of our analysis is on
proving ε-rational-security. In fact, Lemma 4 established sufficiency conditions that greatly
simplify proving ε-rational security. Both constructions are each a δ-PoRC of the replica R and
data D almost by construction (and PRAM strongly sound as proven in Lemma 1), and the main
work left is show that each is a parallel sound proof of space. Both of the constructions can be
viewed as PoS variants of the generic graph labeling PoS (with a tweak for incorporating VDEs).
Furthermore, due to Pietrzak’s recent result [45], we can contain our analysis to parallel pebbling
games, which translates to unconditional security in the random oracle model with some small
loss (Theorem 2). (Before this result graph labeling PoS constructions were still analyzed via
pebbling games and the correspondence was taken for granted). There is a small catch in relying
on this correspondence in our setting, however, which is that Pietrzak’s analysis applied to pure
random oracle labeling games and did not involve VDEs.

6.1 Labeling games with VDEs

Pebbling game model Pebbling games appropriately model labeling games with collision
resistant one-way hash functions informally because of the property that labels on distinct nodes
do not repeat with any significant probability and computing new labels cannot be predicted
without knowing all the inputs to the labeling function, i.e. all the dependency labels. The
independence of labels even holds when there are no dependency edges by incorporating the
unique index of the node as the first input. In the labeling games with VDEs that we consider,
a collision resistant hash function (or random oracle) is used to first derive a key from all the
dependencies of a node. The key is then XORed with a (non-unique) data input, and the result is
passed to a VDE to derive the node’s label. Conditioned on fixed data inputs, these “key labels”
are uniquely determined, and are derived as the output of collision resistant hash functions just
as in usual labeling games.

The important distinction, however, is that the call to the VDE is much more expensive
than the call to the hash function to derive the key. The cost of “placing a pebble” is dominated
by the VDE time delay. The sequentiality security property of a VDE (Definition 13) says
that evaluating the VDE on a point will be hard on a random input, even given an arbitrary
polynomially sized table of evaluations on other points. If the hash function used to derive
the key labels is modeled as random oracle then the input to each VDE call is an independent
uniform random point.

As we are focussed on a parallel adversary, we may assume for the purpose of our analysis
that the adversary always calls the VDE to derive the label whenever a key and input is available.
In fact, for the purpose of analyzing PoS security of PoRep constructions we may assume that
the data inputs are (they are assumed to be available externally in the worst case). This way
the underlying pebbling game is largely unchanged, and we can model the VDE and random
oracle queries as a single pebbling move that can be made only when there are labels on all the
dependencies.

54



Committed data inputs As we already noted, it is crucial that the auxiliary data inputs are
committed (or publicly known) and that the labeling is uniquely dependent on this commitment.
Otherwise, the prover can place any arbitrary labels on the nodes and use the VDE decode
algorithm to find corresponding data inputs consistent with these labels and the key derived from
labels on all neighboring nodes. This allows the prover to circumvent the labeling dependencies
of the underlying graph or even the cost of evaluating the VDE. The issue is resolved by using
the data commitment τD of all data inputs to sample the random oracle Hσ. Intuitively, the
pebbling game is still an accurate security model because the adversary must “know” D before
labeling the graph using Hσ.

Parallel pebbling vs labeling Intuitively, any labeling strategy starting from an initial
advice string that simply stores a set of graph labels then this directly translates to a pebbling
strategy in the corresponding pebbling game and thus inherits the security of the pebbling game.
Moreover, when the labels themselves encode entries in a random oracle’s function table they
are incompressible (Fact 2). However, the labeling adversary’s initial advice (equiv. the PoS
adversary’s persistent storage) need not encode these labels explicitly.

Pietrzak’s unconditional proof of this equivalence in the random oracle model first demon-
strates how to translate a certain set F called “fresh” queries (roughly those queries that contain
any label which has not yet been received as an output of another query) made by a success-
ful labeling strategy into a successful parallel pebbling strategy that uses |F | initial pebbles.
Hence, if the pebbling game is hard without Ω(n) initial pebbles then |F | = Ω(n). Intuitively,
the labeling adverary’s initial advice s must somehow encode F , and therefore should have at
least the same size as F is incompressible (Fact 2). The next step of the proof demonstrates this
formally by showing how to construct an encoding scheme that uses the adversary as a black
box to encode these |F | entries in the random oracle’s function table using just ≈ |s| bits.

It is not immediately clear that this equivalence still holds when comparing the parallel
pebbling game with the VDE cost function to the parallel hardness of the VDE labeling game.
Pietrzak proved the equivalence still holds when the auxiliary data inputs are simply XORed
with the random oracle “key” outputs, and assuming the commitment τD is extractable (e.g.,
a commitment that uses the random oracle itself, such as a Merkle commitment, is extractable
in the random oracle model). In this case the encoding scheme in the proof works roughly the
same way but first extracts the data inputs from the adversary and uses the data to recover the
incompressible “keys”. In the constructions we analyze in this paper the “keys” are similarly
XORed with the data inputs before they are passed to the VDE. Moreover, the VDE is invertible
so the the key labels are still extractable from the output given the data.

However, the security of the construction relies on the cost of querying the VDE, which is
significantly greater than querying the random oracle. One way to address this is to use the
IDP oracle (Definition 14) to model queries to the VDE separately from queries to the random
oracle, and then adapt the analysis of [45] to show that an adversary who wins the labeling
storing too little advice either can compress the random permutation table of VDE.Enc or the
random function table of Hσ. This analysis is beyond the scope of the current document.

6.2 Security claims

For the following claims we assume that Ocheck is perfectly binding on pairs (τD, D) such that
each τD is a position binding vector commitment to D, i.e. for each τD and i there exists a

55



unique Di such that Ocheck(τD, i,D, aux) = 1 for some aux.

Claim 8. Basic-VDE-PoRep is (PRAM strongly) µ-sound (1−δ)-PoRC for any µ > (1−δ)`(λ)+
negl(λ) and with constant additive extractor blowup.

Proof. The implicit PoRC protocol of Basic-VDE-PoRep is just an instantiation of PoRC from
vector commitments Section 2.4.2. The vector commitment is (τD, N) and the opening ad-
vice is (R, id). Each Ri = VDE.Enc(di ⊕ H(id||τD||i) where H is a collision hash function
and each output of VDE.Enc is uniquely decodable. VC.Open on τD, an index i ∈ [N ], block
di, and the opening advice Ri computes VDE.Dec(Ri) ⊕ H(id||τD||i) = di and then verifies
Ocheck(τD, i,D, aux) = 1. This satisfies position binding by the assumption that Ocheck is po-
sition binding. Moreover, since Ri is uniquely determined from di by the properties of VDE
and collision resistance of H the commitment to di is also position binding to Ri. In the PoRC
protocol each challenge in the challenge vector specifies an index i for the ith pair (Ri, di), and
the proof value Ri is an opening of this pair. Therefore the claim follows from Theorem 1.

Claim 9. The composition of k instances of Basic-VDE-PoRep on distinct ids id1, ..., idk is a
parallel ((1− ε+ δ)kN, 2T, (1− ε+ δ)`(λ))-sound PoS for any 1 > ε > δ > 0.

Proof. The implicit PoS in a single instance of Basic-VDE-PoRep is a graph labeling PoS on
a disconnected graph on N , with VC = [N ], and Chal the uniform distribution over [N ]. The
cost of placing a single pebble is T , i.e. c(N) = ∆ = 2T , i.e. when the VDE delay ∆ is set
to 2T . The random black pebbling game on a disconnected graph on N nodes with VC = [N ]
is (γ, 1, γ)-parallel-hard for any γ because the challenge node is unpebbled with probability at
least 1 − γ and it requires 1 move/round to pebble an unpebbled challenge node. Since there
are no edge dependencies the adversary cannot place any red pebbles, i.e. δ = 0. Therefore,
Claim 4 can actually be strengthened in this case to say the PoS is parallel (γN, T, γk)-sound.
Composition follows from Claim 5. Setting γ = 1− ε+ δ gives µ = (1− ε+ δ)k.

Theorem 3. Basic-VDE-PoRep with VDE delay parameter ∆ = 2T is e−λ-sound ε-rational
secure when `(λ) = 2λ/ε.

Proof. Claim 8 proves condition (b) of Lemma 4 with extractor blowup factor c ≈ 1 and Claim 9
proves condition (c) of Lemma 4. Together with the correctness of the construction for an honest
prover, these claims therefore establish that Basic-VDE-PoRep is µ-sound ε-rational secure for
any µ > max((1− δ)`, (1− ε+ δ`)) and any δ < ε. The maximum value of µ is at δ = ε/2, where
µ = (1− ε/2)`. If ` = 2λ

ε then (1− ε
2)` = (1− ε

2)2λ/ε < e−λ.

Claim 10. DRG-PoRep is a (PRAM strongly) µ-sound (1− δ)-PoRC for any µ > (1− δ)`2(κ) +
negl(λ) with constant additive PRAM extractor blowup.

Proof. We similarly claim that the implicit PoRC protocol of DRG-PoRep is a PoRC from vector
commitments with the security parameter `2(κ) determining the number of challenges. Here the
vector commitment explicitly uses a vector commitment scheme VC as an abstract primitive. The
commitment is (τD, comR, N) where comR is a vector commitment to the replica R consisting
of labels on the DRG nodes. The opening advice for an index i is the label Ri = ci on the
ith node along with the key ki derived from the parent labels. The opening value di is then
computed as VDE.Dec(ci⊕ki) = di and the opening to di is then checked by querying the oracle
on Ocheck(τd, i,D, aux). Additionally the opening value Ri is verified against comR using the VC

56



functionality. Correctness is immediate and binding follows from the assumption that Ocheck is
position binding and the security properties of VC (i.e. it is also position binding). The opening
advice is contained in the “online proof” Λret. Note that PoRep.Verify also runs a verification
procedure on aux (this is important for the PoS property), however this is not necessary for the
PoRC verification and can be ignored for the purpose of showing that this is a PoRC. Finally
the claim follows from Theorem 1.

Claim 11. The composition of k instances of DRG-PoRep on distinct ids id1, ..., idk is a parallel
((1− ε+ δ)kN, 2T, µ)-sound PoS for µ = max{(1− δ)`1(λ), (1− ε+ α+ 2δ)`2(λ)} for any δ > 0
when the graph used is an (N,α, β) DRG and the delay parameter is ∆ = 2T/(βN − 1).

Proof. The implicit PoS protocol of each instance of DRG-PoRep is the generic graph labeling
PoS on a (N,α, β) depth robust graph. By Lemma 2, the graph labeling PoS on a family G(N) of
(N,α, β) depth robust graphs with labeling cost function c(N) is an (γn, (βN−1)c(N),max{(1−
δ)`1 , (α+ γ + ε)`2}-parallel-sound PoS for any δ < 1. Setting γ = 1− ε+ δ gives µ = max((1−
δ)`1(λ), (1−ε+2δ+α)`2(κ)). For simplicity we set λ = κ (recall the distinction was to heuristically
allow for different levels of security for online vs. offline proofs). Finally, the pebbling cost is
c(N) = 2T when the VDE delay parameter ∆ = 2T/(βN − 1). Moreover, this PoS is secure
under composition (Lemma 2).

Theorem 4. DRG-PoRep on an (N,α, β) DRG and with VDE delay parameter ∆ = 2T/(βN−1)
is e−λ-sound ε-rational secure when `1 < `2 and `1(λ) = λ/δ and `2(λ) = λ/(ε−α− 2δ) for any
0 < δ < (ε− α)/2.

Proof. Claim 8 proves condition (b) of Lemma 4 with extractor blowup factor c ≈ 1 and Claim 9
proves condition (c) of Lemma 4. Together with the correctness of the construction for an honest
prover, these claims therefore establish that DRG-PoRep is µ-sound ε-rational secure for any:

µ > max{(1− δ)`2 , (1− δ)`1 , (1− ε+ α+ 2δ)`2)

In general for practicality it is desirable that `1 is as small as possible, whereas `2 may be larger.
Therefore, we may assume that `1 < `2 and can ignore the (1 − δ)`2 term. Finally, using the
inequality (1− x)x < e−x for x ∈ (0, 1) derives yields the theorem statmeent with `1 = λ/δ and
`2 = λ/(ε− α− 2δ).

The parameter δ in Theorem 4 allows one to tune the relative size of `1 and `2 to maintain
the same level of security in the parameter λ. Decreasing δ increases `1 and decreases `2.

Acknowledgements

Joseph Bonneau, Nicola Grecco, and Juan Benet provided critical input throughout the de-
velopment of this work and are coauthors on a related systems project prototyping practical
implementations of PoReps, including the constructions presented at BPASE 2018 and dis-
cussed in further detail in this work. Nicola Grecco also helped run the experimental attacks
on DRGs presented in Section 5. Many others have contributed through helpful comments and
conversations, including Dan Boneh, Rafael Pass, Ethan Cecchetti, Benedikt Bünz, and Florian
Tramer.

57



References

[1] Filecoin: A decentralized storage network. Protocol Labs, 2017. https://filecoin.io/

filecoin.pdf.
[2] Proof of replication. Protocol Labs, 2017. https://filecoin.io/proof-of-replication.

pdf.
[3] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid

Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space. In
ASIACRYPT, 2017.

[4] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In ASIACRYPT, pages 191–219, 2016.

[5] Joël Alwen, Jeremiah Blocki, and Benjamin Harsha. Practical graphs for optimal side-
channel resistant memory-hard functions. In CCS, 2017.

[6] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In
EUROCRYPT, 2018.

[7] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame. Mir-
ror: Enabling proofs of data replication. In 25th USENIX Security Symposium, 2016.

[8] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
Peterson, and Dawn Song. Provable data possession at untrusted stores. In ACM Conference
on Computer and Communications Security, 2007.

[9] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomorphic
identification protocols. In Asiacrypt, 2009.

[10] Niko Baŕıc and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz, Germany,
May 11-15, 1997, Proceeding, pages 480–494, 1997.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
CRYPTO, 2013.

[12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks
for C: verifying program executions succinctly and in zero knowledge. In CRYPTO, 2013.

[13] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alter-
native to digital sinatures (extended abstract). In EUROCRYPT, 1993.

[14] Dan Boneh, Joseph Bonneau, Benedikt Bunz, and Ben Fisch. Verifiable delay functions.
2018. To appear in CRYPTO 2018.

[15] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory and im-
plementation. In CCSW’09 Proceedings of the 2009 ACM workshop on Cloud computing
security), 2009.

[16] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In CRYPTO, 2002.

[17] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC 2013,
2013.

[18] F.R.K. Chung. On concentrators, superconcentrators, generalizers, and nonblocking net-
works. In Bell System Technical Journal, 1979.

[19] Bram Cohen. Proofs of space and time. Blockchain Protocol Analysis and Security Engi-

58

https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/proof-of-replication.pdf 
https://filecoin.io/proof-of-replication.pdf 


neering, 2017. https://cyber.stanford.edu/sites/default/files/bramcohen.pdf.
[20] Moni Naor Cynthia Dwork and Hoeteck Wee. Pebbling and proofs of work. In CRYPTO,

2005.
[21] Ivan Damgard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated storage without

timing assumptions. Cryptology ePrint Archive, Report 2018/654, 2018. https://eprint.
iacr.org/2018/654.

[22] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In CRYPTO, 2010.

[23] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Theory of Cryptography Conference (TCC), 2009.

[24] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In CRYPTO, 2015.

[25] Uriel Fiege, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. In Journal of
Cryptology, 1988.

[26] Ben Fisch, Joseph Bonneau, Juan Benet, and Nicola Greco. Proofs of replication using
depth robust graphs. In Blockchain Protocol Analysis and Security Engineering 2018, 2018.
https://cyber.stanford.edu/bpase2018.

[27] Ben Fisch and Shashwat Silas. Weak compression and (in)security of rational proofs of
storage. Cryptology ePrint Archive, Report 2018/514, 2018. https://eprint.iacr.org/

2018/514.
[28] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforcing

communication and storage complexity. In Financial Cryptography, 2002.
[29] Chethan Kamath Vladimir Kolmogorov Krzysztof Pietrzak Joöel Alwen, Binyi Chen and

Stefano Tessaro. On the complexity of scrypt and proofs of space in the parallel random
oracle model. In EUROCRYPT, 2016.

[30] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings
of the 14th ACM conference on Computer and communications security, pages 584–597.
Acm, 2007.

[31] Arjen K Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR
Cryptology ePrint Archive, 2015, 2015.

[32] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

[33] Sergio Demian Lerner. Proof of unique blockchain storage, 2014. https://bitslog.

wordpress.com/2014/11/03/proof-of-local-blockchain-storage/.
[34] Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:

From polynomial commitments to pairing-based from simple assumptions. In ICALP, 2016.
[35] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and independent

zero-knowledge sets with short proofs. In TCC, 2010.
[36] Mohammad Mahmoody, Tal Moran, and Salil P Vadhan. Time-lock puzzles in the random

oracle model. In CRYPTO. Springer, 2011.
[37] Ueli Maurer. Unifying proofs of knowledge. In CRYPTO, 2009.
[38] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility

results on reductions, and applications to the random oracle methodology. In TCC, 2004.
[39] S. Matthew Weinberg Miles Carlsten, Harry Kalodner and Arvind Narayanan. On the

instability of bitcoin without the block reward. In ACM CCS, 2016.
[40] Tal Moran and Ilan Orlov. Rational Proofs of Space-Time. Cryptology ePrint Archive #

59

https://cyber.stanford.edu/sites/default/files/bramcohen.pdf
https://eprint.iacr.org/2018/654
https://eprint.iacr.org/2018/654
https://cyber.stanford.edu/bpase2018
https://eprint.iacr.org/2018/514
https://eprint.iacr.org/2018/514
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/ 
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/ 


2016/035, 2016.
[41] Salil Vadhan Omer Reingold and Avi Wigderson. Entropy waves, the zig-zag graph product,

and new constant-degree expanders and extractors. In FOCS, 2000.
[42] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer, and Peter

Gai. Spacemint: A cryptocurrency based on proofs of space. Cryptology ePrint Archive,
Report 2015/528, 2015. http://eprint.iacr.org/2015/528.

[43] Ronald L. Graham Paul Erdös and Endre Szemeredi. On sparse graphs with dense long
paths. In Computers & Mathematics with Applications, 1975.

[44] Daniele Perito and Gene Tsudik. Secure code update for embedded devices via proofs of
secure erasure. In ESORICS, 2010.

[45] Krzysztof Pietrzak. Proofs of Catalytic Space. Cryptology ePrint Archive # 2018/194,
2018.

[46] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In TCC, 2016.
[47] Randal Burns Reza Curtmola, Osama Khan and Giuseppe Ateniese. Mr-pdp: Multiple-

replica provable data possession. In In Distributed Computing Systems, 2008. ICDCS08.,
2008.

[48] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Asiacrypt, 2008.
[49] Luca Trevisan, Salil Vadhan, and David Zuckerman. Compression of samplable sources.

Computational Complexity, 14(3):186–227, 2005.
[50] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical

Foundations of Computer Science, 1977.
[51] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil Stefanov, and Nikos

Triandopoulos. Hourglass schemes: how to prove that cloud files are encrypted. In ACM
CCS, 2012.

[52] Gaven J. Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E. Locasto, and
Shivaramakrishnan Narayan. Lost: location based storage. In CCSW, 2012.

60

http://eprint.iacr.org/2015/528

